ACCIMN

CHEMISTRY 165 // SPRING 2020

What is an acid?

Let's stick with the Brønsted-Lowry definition:
ACID: Proton (H^{+}) donor, or gives off free H^{+}
BASE: Proton $\left(\mathrm{H}^{+}\right)$acceptor, or reacts with H^{+}to give off OH^{-}

To help, consider the following examples of acids. Notice how the acids give off H^{+}and an anion.

$$
\begin{aligned}
& \hline \mathrm{ACID} \\
& \hline \mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \\
& \mathrm{CH}_{3} \mathrm{COOH}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \\
& \mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NH}_{3} \\
& \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \\
& \mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

In general, we can express the reactivity
of ACIDS and BASES as.

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}
$$

What is an acid? What is a base?

Let's stick with the Brønsted-Lowry definition:
ACID: Proton (H^{+}) donor, or gives off free H^{+}
BASE: Proton $\left(\mathrm{H}^{+}\right)$acceptor, or reacts with H^{+}to give off OH^{-}

To help, consider the following examples of acids. Notice how the acids give off H^{+}and an anion.
Now consider the following examples of bases, some reacting with water ($\mathrm{H}_{2} \mathrm{O}$). Pay close attention to how each base reacts (with water) and what each base gives off.

ACID	BASE
$\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$	$\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-}$
$\mathrm{CH}_{3} \mathrm{COOH}^{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HSO}_{4}^{-}+\mathrm{OH}^{-}$
$\mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NH}_{3}$	$\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{OH}^{-}$
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$	$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}$	$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$	$\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$

In general, we can express the reactivity
of ACIDS and BASES as:

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}^{+}+\mathrm{OH}^{-}
$$

What is an acid? What is a base?

Let's stick with the Brønsted-Lowry definition:
ACID: Proton (H^{+}) donor, or gives off free H^{+}
BASE: Proton $\left(\mathrm{H}^{+}\right)$acceptor, or reacts with H^{+}to give off OH^{-}
ACID BASE

Exercise: Go back to the previous slide and identify the conjugate-bases and conjugate-acids of each of the acids and bases, respectively.

$$
\begin{array}{cc}
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} & \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}^{+}+\mathrm{OH}^{-} \\
\begin{array}{c}
\mathrm{HA}: \text { acid }
\end{array} & \mathrm{B}: \text { base } \\
\mathrm{A}^{-}: \text {conjugate-base } & \mathrm{HB}^{+}: \text {conjugate-acid } \\
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} & K_{\mathrm{b}}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{array} \longleftarrow \text { These are equilibrium constants! }
$$

Let's come back to

this chart in a bit.

Measuring acidity or basicity: $\mathrm{pH} \not \subset \mathbb{C}_{8} \mathrm{pOH}$

Because Brønsted-Lowry theory defines acids as giving off H^{+}and bases as giving off OH^{-}, we can formulate a metric to determine how acidic an acid is and how basic a base is.

Consider the aqueous equilibria associated with acids and bases below and their equilibrium constants: K_{a} and K_{b}.
For an acid, the amount of H^{+}liberated, $\left[\mathrm{H}^{+}\right]$, will define its acidity.
For a base, the amount of OH^{-}liberated, $\left[\mathrm{OH}^{-}\right]$, will define its basicity.

Because concentrations can span large ranges (from very small to very large), we can take a logarithm of the concentrations to give us a more "user-friendly" number: pH and pOH .

ACID	BASE
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$	$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}^{+}+\mathrm{OH}^{-}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$	$K_{\mathrm{b}}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

Measuring acidity or basicity: $\mathrm{pH} \not \subset \mathrm{C}_{8} \mathrm{pOH}$

Typically, we work in terms of pH , where acidic solutions have $\mathrm{pH}<7$ and basic solutions have $\mathrm{pH}>7$.
Neutral solutions (pure water) have $\mathrm{pH}=7$.

The pH scale below shows how we can relate $\left[\mathrm{H}^{+}\right]$and pH (or $\left[\mathrm{OH}^{-}\right]$and pOH).

$$
\begin{array}{cc}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}} & {\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}} \\
\mathrm{pH}+\mathrm{pOH}=14
\end{array}
$$

What is does $\boldsymbol{K}_{\mathrm{a}}$ or $\boldsymbol{K}_{\mathrm{b}}$ tell me?

Since the K_{a} (or K_{b}) value is an equilibrium constant, its magnitude tell us to what extent the acid (or base) dissociates to give off $\mathrm{H}^{+}\left(\right.$or $\left.\mathrm{OH}^{-}\right)$.

ACID	BASE
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$	$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}^{+}+\mathrm{OH}^{-}$

HA: acid
A^{-}: conjugate base
$\longleftarrow K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

B: base
HB^{+}: conjugate acid

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

Complete dissociation;
Not an equilibrium;
All H^{+}and A^{-}in solution No HA
$\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$

Partial dissociation;
Equilibrium lies to the left;
Mostly HA in solution, some H^{+}and A^{-}

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}
$$

Strong Acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}$
Strong Bases: $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$

PRACTICE PROBLEM

Calculate the pH of each of the following solutions of strong acids and strong bases.

	Concentration	Acid/Base	pH
A	0.001 M	HI	
B	0.1 M	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
C	0.76 M	NaOH	
D	$2.8 \times 10^{-4} \mathrm{M}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	

PRACTICE PROBLEM

Calculate the pH of each of the following solutions of strong acids and strong bases.

- anszer -

	Concentration	Acid/Base	pH
A	0.001 M	HI	
B	0.1 M	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
C	0.76 M	NaOH	
D	$2.8 \times 10^{-4} \mathrm{M}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	

First, realize that strong acids and strong bases will dissociate completely in solution. Therefore, we can consider unidirectional arrows in place of the equilibrium arrows.

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{BOH} \rightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

PRACTICE PROBLEM

Calculate the pH of each of the following solutions of strong acids and strong bases.

- ans\%er -

	Concentration	Acid/Base	pH
A	0.001 M	HI	
B	0.1 M	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
C	0.76 M	NaOH	
D	$2.8 \times 10^{-4} \mathrm{M}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	

First, realize that strong acids and strong bases will dissociate completely in solution. Therefore, we can consider unidirectional arrows in place of the equilibrium arrows.

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{BOH} \rightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

As such, calculating the pH of solutions A and C is fairly straightforward.
Solution $\mathrm{A}: \mathrm{HI} \rightarrow \mathrm{H}^{+}+\mathrm{I}^{-}$

$$
\text { Solution } \mathrm{C}: \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}
$$

PRACTICE PROBLEM

Calculate the pH of each of the following solutions of strong acids and strong bases.

- ans\%er -

	Concentration	Acid/Base	pH
A	0.001 M	HI	
B	0.1 M	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
C	0.76 M	NaOH	
D	$2.8 \times 10^{-4} \mathrm{M}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	

First, realize that strong acids and strong bases will dissociate completely in solution. Therefore, we can consider unidirectional arrows in place of the equilibrium arrows.

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{BOH} \rightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

As such, calculating the pH of solutions A and C is fairly straightforward.

Solution $\mathrm{A}: \mathrm{HI} \rightarrow \mathrm{H}^{+}+\mathrm{I}^{-}$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\frac{0.001 \mathrm{~mol} \mathrm{HI}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{HI}}=0.001 \mathrm{M}} \\
\mathrm{pH}=-\log (0.001)=3.0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Solution } \mathrm{C}: \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \qquad \begin{array}{c}
{\left[\mathrm{OH}^{-}\right]=} \\
0.76 \mathrm{~mol} \mathrm{NaOH} \\
1 \mathrm{~L}
\end{array} \frac{1 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.76 \mathrm{M} \\
& \mathrm{pOH}=-\log (0.76)=0.11_{9} \\
& \mathrm{pH}=14-\mathrm{pOH}=13.88
\end{aligned}
$$

PRACTICE PROBLEM 1

Calculate the pH of each of the following solutions of strong acids and strong bases.

- anszer -

	Concentration	Acid/Base	pH
A	0.001 M	HI	
B	0.1 M	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
C	0.76 M	NaOH	
D	$2.8 \times 10^{-4} \mathrm{M}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	

First, realize that strong acids and strong bases will dissociate completely in solution. Therefore, we can consider unidirectional arrows in place of the equilibrium arrows.

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{BOH} \rightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

As such, calculating the pH of solutions A and C is fairly straightforward.

Solution $\mathrm{A}: \mathrm{HI} \rightarrow \mathrm{H}^{+}+\mathrm{I}^{-}$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\frac{0.001 \mathrm{~mol} \mathrm{HI}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{HI}}=0.001 \mathrm{M}} \\
\mathrm{pH}=-\log (0.001)=3.0
\end{gathered}
$$

$$
\begin{gathered}
\text { Solution } \mathrm{C}: \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
\qquad \begin{array}{c}
{\left[\mathrm{OH}^{-}\right]=} \\
\frac{0.76 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.76 \mathrm{M} \\
\mathrm{pOH}=-\log (0.76)=0.11_{9} \\
\mathrm{pH}=14-\mathrm{pOH}=13.88
\end{array}
\end{gathered}
$$

For solutions B and C , we need to take into account the stoichiometry of the dissociation.

$$
\text { Solution B: } \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \quad \text { Solution D: } \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}
$$

PRACTICE PROBLEM 1

Calculate the pH of each of the following solutions of strong acids and strong bases.

- anszer -

	Concentration	Acid/Base	pH
A	0.001 M	HI	
B	0.1 M	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
C	0.76 M	NaOH	
D	$2.8 \times 10^{-4} \mathrm{M}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	

First, realize that strong acids and strong bases will dissociate completely in solution. Therefore, we can consider unidirectional arrows in place of the equilibrium arrows.

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{BOH} \rightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

As such, calculating the pH of solutions A and C is fairly straightforward.

Solution $\mathrm{A}: \mathrm{HI} \rightarrow \mathrm{H}^{+}+\mathrm{I}^{-}$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\frac{0.001 \mathrm{~mol} \mathrm{HI}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{HI}}=0.001 \mathrm{M}} \\
\mathrm{pH}=-\log (0.001)=3.0
\end{gathered}
$$

$$
\begin{gathered}
\text { Solution } \mathrm{C}: \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
\qquad \begin{array}{c}
{\left[\mathrm{OH}^{-}\right]=} \\
\frac{0.76 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.76 \mathrm{M} \\
\mathrm{pOH}=-\log (0.76)=0.11_{9} \\
\mathrm{pH}=14-\mathrm{pOH}=13.88
\end{array}
\end{gathered}
$$

For solutions B and C , we need to take into account the stoichiometry of the dissociation.

$$
\begin{array}{cc}
\text { Solution } \mathrm{B}: \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} & \text { Solution D: } \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-} \\
{\left[\mathrm{H}^{+}\right]=\frac{0.1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=0.2 \mathrm{M}} & {\left[\mathrm{OH}^{-}\right]=\frac{2.8 \times 10^{-4} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{Ca}(0 \mathrm{OH})_{2}}=5.6 \times 10^{-4} \mathrm{M}} \\
\mathrm{pH}=-\log (0.2)=0.7 & \mathrm{pOH}=-\log \left(5.6 \times 10^{-4}\right)=3.25_{2} \\
\mathrm{pH}=14-\mathrm{pOH}=10.75
\end{array}
$$

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. - ansceer -

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. - ansceer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process. Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process.
Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
Then, write out the equilibrium constant expression based on the Law of Mass Action.
Construct an ICE chart.

$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons$	$\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$	
I		
C		$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.76 \times 10^{-5}$
E		

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process.
Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
Then, write out the equilibrium constant expression based on the Law of Mass Action.
Construct an ICE chart. Fill in the initial values.

	$\mathrm{CH}_{3} \mathrm{COOH}$	\rightleftharpoons	H^{+}	$+\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\quad \quad$	a
:---						
I						
C						
C						
E						

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process.
Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
Then, write out the equilibrium constant expression based on the Law of Mass Action.
Construct an ICE chart. Fill in the initial values. Then fill in the stoichiometric changes (x values).

	$\mathrm{CH}_{3} \mathrm{COOH}$	\rightleftharpoons	H^{+}	+
$\mathrm{CH}_{3} \mathrm{COO}^{-}$				
I	0.10 M	0		0
C	-x		+x	
E				

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.76 \times 10^{-5}
$$

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process.
Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
Then, write out the equilibrium constant expression based on the Law of Mass Action.
Construct an ICE chart. Fill in the initial values. Then fill in the stoichiometric changes (x values). Finally fill in the equilibrium concentration values.

	$\mathrm{CH}_{3} \mathrm{COOH}$	\rightleftharpoons	H^{+}	+
$\mathrm{CH}_{3} \mathrm{COO}^{-}$				
I	0.10 M		0	
C	-x		+x	
E	$0.10-\mathrm{x}$		x	
			x	

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.76 \times 10^{-5}
$$

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process.
Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
Then, write out the equilibrium constant expression based on the Law of Mass Action.
Construct an ICE chart. Fill in the initial values. Then fill in the stoichiometric changes (x values). Finally fill in the equilibrium concentration values.

We can use the equilibrium concentration values to plug into our expression for K_{a}.

	$\mathrm{CH}_{3} \mathrm{COOH}$	\rightleftharpoons	H^{+}	+	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.76 \times 10^{-5}$	
1	0.10 M		0		0		
C	- x		+ x		+ x	$1.76 \times 10^{-5}=(\mathrm{x})(\mathrm{x})$	
E	$0.10-\mathrm{x}$		x		x	$0.10-\mathrm{x}$	

PRACTICE PROBLEM

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process.
Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
Then, write out the equilibrium constant expression based on the Law of Mass Action.
Construct an ICE chart. Fill in the initial values. Then fill in the stoichiometric changes (x values). Finally fill in the equilibrium concentration values.

We can use the equilibrium concentration values to plug into our expression for K_{a}. Finally solve for x and calculate the pH .

	$\mathrm{CH}_{3} \mathrm{COOH}$	\rightleftharpoons	H^{+}	+	$\mathrm{CH}_{3} \mathrm{COO}$	$K_{\mathrm{a}}=\frac{\mathrm{H}^{2}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{}$	1.76×10^{-5}
I	0.10 M		0		0		
C	-x		+ x		+ x	$0^{-5}=\frac{(x)(x)}{0.10-x}$	
E	$0.10-\mathrm{x}$		x		x	$0.10-\mathrm{x}$	

PRACTICE PROBLEM 2

Calculate the pH of a 100.00 mL solution of 0.10 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ where $K_{\mathrm{a}}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- answer -

First, note that $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid because K_{a} is small. Therefore, we have to consider the equilibrium process.
Always being by writing out the balanced equilibrium expression for the weak acid dissociation.
Then, write out the equilibrium constant expression based on the Law of Mass Action.
Construct an ICE chart. Fill in the initial values. Then fill in the stoichiometric changes (x values). Finally fill in the equilibrium concentration values.

We can use the equilibrium concentration values to plug into our expression for K_{a}.
Finally solve for x and calculate the pH .

	$\mathrm{CH}_{3} \mathrm{COOH}$	\rightleftharpoons	H^{+}	+
$\mathrm{CH}_{3} \mathrm{COO}^{-}$				
I	0.10 M	0		0
C	-x		+x	
E	$0.10-\mathrm{x}$		x	
			x	

Because the value of K_{a} is very small, we know that the system will undergo very little change (x value) toward the right in order to

$$
1.76 \times 10^{-5}=\frac{x^{2}}{0.10}
$$ achieve equilibrium. In other words, we can take " x " to be very small/negligible and invoke the approximation that:

$$
x=0.0013_{3} M=\left[H^{+}\right]
$$

$$
0.10-x \approx 0.10
$$

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.76 \times 10^{-5} \\
1.76 \times 10^{-5} & =\frac{(\mathrm{x})(\mathrm{x})}{0.10-\mathrm{x}}
\end{aligned}
$$

$$
\mathrm{pH}=-\log \left(0.0013_{3}\right)=2.88
$$

PRACTICE PROBLEM 3

Calculate the pH of a solution that is $0.20 \mathrm{M} \mathrm{NH}_{4}+$ if $K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. - ans\%er -

PRACTICE PROBLEM 3

Calculate the pH of a solution that is $0.20 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$if $K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- anscer -

First, note that $\mathrm{NH}_{4}{ }^{+}$is an acid whose conjugate-base is NH_{3}. Since we are given the K_{b} of the NH_{3}, we can extract the value of K_{a}.

$$
\begin{aligned}
K_{\mathrm{w}} & =K_{a} \times K_{b}=1.0 \times 10^{-14} \\
K_{\mathrm{a}} & =\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.5_{6} \times 10^{-10}
\end{aligned}
$$

PRACTICE PROBLEM 3

Calculate the pH of a solution that is $0.20 \mathrm{M} \mathrm{NH}_{4}+$ if $K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{NH}_{4}{ }^{+}$is an acid whose conjugate-base is NH_{3}. Since we are given the K_{b} of the NH_{3}, we can extract the value of K_{a}.

$$
\begin{aligned}
K_{\mathrm{w}} & =K_{a} \times K_{b}=1.0 \times 10^{-14} \\
K_{\mathrm{a}} & =\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.5_{6} \times 10^{-10}
\end{aligned}
$$

Now we can see that $\mathrm{NH}_{4}{ }^{+}$is a weak acid and we need to consider the weak acid equilibrium. So, write out the balanced equilibrium expression and the equilibrium constant expression for the weak acid dissociation.

| $\mathrm{NH}_{4}{ }^{+}$ | \rightleftharpoons | H^{+} | $+\quad \mathrm{NH}_{3}$ |
| :---: | :---: | :---: | :---: | :---: |

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.5_{6} \times 10^{-10}
$$

PRACTICE PROBLEM 3

Calculate the pH of a solution that is $0.20 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$if $K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{NH}_{4}{ }^{+}$is an acid whose conjugate-base is NH_{3}. Since we are given the K_{b} of the NH_{3}, we can extract the value of K_{a}.

$$
\begin{aligned}
K_{\mathrm{w}} & =K_{a} \times K_{b}=1.0 \times 10^{-14} \\
K_{\mathrm{a}} & =\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.5_{6} \times 10^{-10}
\end{aligned}
$$

Now we can see that $\mathrm{NH}_{4}{ }^{+}$is a weak acid and we need to consider the weak acid equilibrium. So, write out the balanced equilibrium expression and the equilibrium constant expression for the weak acid dissociation.
Construct an ICE chart. Fill in the initial values, then the stoichiometric changes, and finally the equilibrium concentration values.

	NH_{4}^{+}	\rightleftharpoons	H^{+}	+		
I	0.20		0	NH_{3}		
C	-x		+x	0		
E	$0.20-\mathrm{x}$		x	+x		
		x			\quad	a
:---	\quad	$\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]$				
:---						
$\left[\mathrm{NH}_{4}^{+}\right]$	$=5.5_{6} \times 10^{-10}$					

PRACTICE PROBLEM
 3

Calculate the pH of a solution that is $0.20 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$if $K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- ansceer -

First, note that $\mathrm{NH}_{4}{ }^{+}$is an acid whose conjugate-base is NH_{3}. Since we are given the K_{b} of the NH_{3}, we can extract the value of K_{a}.

$$
\begin{aligned}
K_{\mathrm{w}} & =K_{a} \times K_{b}=1.0 \times 10^{-14} \\
K_{\mathrm{a}} & =\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.5_{6} \times 10^{-10}
\end{aligned}
$$

Now we can see that $\mathrm{NH}_{4}{ }^{+}$is a weak acid and we need to consider the weak acid equilibrium. So, write out the balanced equilibrium expression and the equilibrium constant expression for the weak acid dissociation.
Construct an ICE chart. Fill in the initial values, then the stoichiometric changes, and finally the equilibrium concentration values. We can use the equilibrium concentration values to plug into our expression for K_{a}.

	$\mathrm{NH}_{4}{ }^{+}$	\rightleftharpoons	H^{+}	+	NH_{3}
I	0.20		0		0
C	-x		+x		+x
E	$0.20-\mathrm{x}$		x		x

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.5_{6} \times 10^{-10} \\
5.5_{6} \times 10^{-10} & =\frac{(\mathrm{x})(\mathrm{x})}{0.20-\mathrm{x}}
\end{aligned}
$$

PRACTICE PROBLEM

Calculate the pH of a solution that is $0.20 \mathrm{M} \mathrm{NH}_{4}{ }^{+}$if $K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

- answer -

First, note that $\mathrm{NH}_{4}{ }^{+}$is an acid whose conjugate-base is NH_{3}. Since we are given the K_{b} of the NH_{3}, we can extract the value of K_{a}.

$$
\begin{aligned}
K_{\mathrm{w}} & =K_{a} \times K_{b}=1.0 \times 10^{-14} \\
K_{\mathrm{a}} & =\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.5_{6} \times 10^{-10}
\end{aligned}
$$

Now we can see that $\mathrm{NH}_{4}{ }^{+}$is a weak acid and we need to consider the weak acid equilibrium. So, write out the balanced equilibrium expression and the equilibrium constant expression for the weak acid dissociation.
Construct an ICE chart. Fill in the initial values, then the stoichiometric changes, and finally the equilibrium concentration values.
We can use the equilibrium concentration values to plug into our expression for K_{a}. Finally solve for x and calculate the pH .

	$\mathrm{NH}_{4}{ }^{+}$	\rightleftharpoons	H^{+}	+	NH_{3}
I	0.20		0		0
C	-x		+x		+x
E	$0.20-\mathrm{x}$		x		x

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.5_{6} \times 10^{-10} \\
5.5_{6} \times 10^{-10} & =\frac{(\mathrm{x})(\mathrm{x})}{0.20-\mathrm{x}}
\end{aligned}
$$

Because the value of K_{a} is very small, we know that the system will undergo very little change (x value) toward the right in order to achieve equilibrium. In other words, we can take " x " to be very small/negligible and invoke the approximation that:

$$
0.20-x \approx 0.20
$$

$$
\begin{aligned}
5.5_{6} \times 10^{-10} & =\frac{x^{2}}{0.20} \\
x & =1.0_{5} \times 10^{-5} \mathrm{M}=\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

$$
\mathrm{pH}=-\log \left(1.0_{5} \times 10^{-5}\right)=4.98
$$

PRACTICE PROBLEM 4

Determine the K_{a} of a 0.0516 M solution of HNO_{2} with a $\mathrm{pH}=2.34$.

PRACTICE PROBLEM 4

Determine the K_{a} of a 0.0516 M solution of HNO_{2} with a $\mathrm{pH}=2.34$.

- ansceer -
HNO_{2} is a weak acid, so we can start by writing the weak acid dissociation equilibrium and the associated equilibrium expression.

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}
$$

$\mathrm{HNO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NO}_{2}^{-}$

PRACTICE PROBLEM 4

Determine the K_{a} of a 0.0516 M solution of HNO_{2} with a $\mathrm{pH}=2.34$.

- answer -
HNO_{2} is a weak acid, so we can start by writing the weak acid dissociation equilibrium and the associated equilibrium expression.

Again, we can construct an ICE chart. Fill in the initial values, then the stoichiometric changes, and finally the equilibrium concentration values. Now what?

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& =\frac{(\mathrm{x})(\mathrm{x})}{0.0516-\mathrm{x}}
\end{aligned}
$$

	HNO_{2}	\rightleftharpoons	H^{+}	+	$\mathrm{NO}_{2}{ }^{-}$
I	0.0516		0		0
C	-x		+x		+x
E	$0.0516-\mathrm{x}$		x		x

PRACTICE PROBLEM 4

Determine the K_{a} of a 0.0516 M solution of HNO_{2} with a $\mathrm{pH}=2.34$.

- anster -
HNO_{2} is a weak acid, so we can start by writing the weak acid dissociation equilibrium and the associated equilibrium expression.

Again, we can construct an ICE chart. Fill in the initial values, then the stoichiometric changes, and finally the equilibrium concentration values. Now what?

They give us the pH , which tells us $\left[\mathrm{H}^{+}\right]$at equilibrium, and remember that $\mathrm{x}=\left[\mathrm{H}^{+}\right]$.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.34}=0.0045_{7} \mathrm{M}}
\end{aligned}
$$

	HNO_{2}	\rightleftharpoons	H^{+}	+	$\mathrm{NO}_{2}{ }^{-}$
I	0.0516		0		0
C	-x		+x		+x
E	$0.0516-\mathrm{x}$		x		x

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& =\frac{(\mathrm{x})(\mathrm{x})}{0.0516-\mathrm{x}}
\end{aligned}
$$

PRACTICE PROBLEM 4

Determine the K_{a} of a 0.0516 M solution of HNO_{2} with a $\mathrm{pH}=2.34$.

- ansser -
HNO_{2} is a weak acid, so we can start by writing the weak acid dissociation equilibrium and the associated equilibrium expression.

Again, we can construct an ICE chart. Fill in the initial values, then the stoichiometric changes, and finally the equilibrium concentration values. Now what?

They give us the pH , which tells us $\left[\mathrm{H}^{+}\right]$at equilibrium, and remember that $\mathrm{x}=\left[\mathrm{H}^{+}\right]$.
Let's replace this value into the ICE chart.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.34}=0.0045_{7} \mathrm{M}}
\end{aligned}
$$

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& =\frac{(\mathrm{x})(\mathrm{x})}{0.0516-\mathrm{x}}
\end{aligned}
$$

	HNO_{2}	\rightleftharpoons	H^{+}	+
I	0.0516		0	
C	-0.0045_{7}		$+0.0045_{7}$	
E	$0.0516-0.0045_{7}$		0.0045_{7}	

PRACTICE PROBLEM 4

Determine the K_{a} of a 0.0516 M solution of HNO_{2} with a $\mathrm{pH}=2.34$.

- ansteer -
HNO_{2} is a weak acid, so we can start by writing the weak acid dissociation equilibrium and the associated equilibrium expression.

Again, we can construct an ICE chart. Fill in the initial values, then the stoichiometric changes, and finally the equilibrium concentration values. Now what?

They give us the pH , which tells us $\left[\mathrm{H}^{+}\right]$at equilibrium, and remember that $\mathrm{x}=\left[\mathrm{H}^{+}\right]$
Let's replace this value into the ICE chart. Finally, solve for K_{a} from the equilibrium concentrations.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.34}=0.0045_{7} \mathrm{M}}
\end{aligned}
$$

	HNO_{2}	\rightleftharpoons	H^{+}	+
I	0.0516		0	
C	$-0.0045_{7}{ }^{-}$			
E	$0.0516-0.0045_{7}$		0.0045_{7}	
	0.0045_{7}		0.0045_{7}	
			0.0045_{7}	

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& =\frac{(\mathrm{x})(\mathrm{x})}{0.0516-\mathrm{x}} \\
& =\frac{\left(0.0045_{7}\right)^{2}}{0.0516-0.0045_{7}} \\
K_{\mathrm{a}} & =4.5 \times 10^{-4}
\end{aligned}
$$

