ORGANIC CHRISTRY ALKENE REACTIONS: HALOGENATIONS AND HYDRATION

CHEMISTRY 165 // SPRING 2020

Alkene halogenation (X₂)

This reaction requires an alkene and a halogen X_2 (Br₂, I₂, F₂).

Reaction: add two halogen atoms (X) to the carbon atoms on a double bond.

+ Br—Br
$$\rightarrow$$
 Br

trans-but-2-ene
 (C_4H_8)
 $(C_4H_8Br_2)$

Complete each reaction by drawing the correct missing reactant or product.

$$+$$
 Br_2 \longrightarrow Br_2

Complete each reaction by drawing the correct missing reactant or product.

$$+ Cl_{2} \rightarrow Cl$$

$$+ Br_{2} \rightarrow Br$$

$$+ Br_{2} \rightarrow Cl$$

$$+ Cl_{2} \rightarrow Cl$$

Alkene hydrohalogenation (HX)

This reaction requires an alkene and an HX (X = Br, Cl, I) molecule.

Reaction: add a hydrogen (H) atom and a halogen (X) atom across a double bond

<u>Product</u>: the halogen (X) atom adds to the more substituted carbon atom, and the hydrogen (H) atoms adds to the less substituted carbon atom. This is called <u>Markovnikov's Rule</u>.

+ H—Br
$$\rightarrow$$
 H

2-methylprop-2-ene (C_5H_{10})

(C_5H_{10})

($C_5H_{11}Br$)

Complete each reaction by drawing the correct missing reactant or product.

Complete each reaction by drawing the correct missing reactant or product.

Alkene hydration (H₂O, H⁺)

This reaction requires an alkene, a water molecule (H_2O), and an acid catalyst (H^+ , H_3O^+ , H_2SO_4 , etc.).

Reaction: add a hydrogen (H) atom and a hydroxide (-OH) group across a double bond

<u>Product</u>: the hydroxide (-OH) group adds to the more substituted carbon atom, and the hydrogen (H) atoms adds to the less substituted carbon atom. This still follows <u>Markovnikov's Rule</u>.

+ H—OH
$$\stackrel{\text{H}^+}{\longrightarrow}$$
 2-methylprop-2-ene (C_5H_{10}) ($C_5H_{11}OH$)

Complete each reaction by drawing the correct missing reactant or product.

$$+$$
 H—OH $\xrightarrow{\text{H}_2\text{SO}_4}$

Complete each reaction by drawing the correct missing reactant or product.

+ H-OH
$$H_2SO_4$$
 OH

+ H-OH H_2SO_4 (no reaction; needs acid)

+ H-OH H^+ OH H^+ OH H_2SO_4 OH

Which of the following reaction(s) would yield products with a new chiral center?

Which of the following reaction(s) would yield products with a new chiral center?

$$+$$
 H $-$ OH $\xrightarrow{H^+}$ OH