ACIDS & BASS BUFFERS & THE COMMON ION EFFECT

CHEMISTRY 165 // SPRING 2020

Inventory of what we've covered so far

We have considered acids and bases separately:

We have considered mixing acids and bases together: acid base

We have considered how aqueous salts (BA) can be acidic, basic, or neutral in water.

Now we will consider the mixture of weak acids/bases with salts to form buffers.

 $HA(aq) \rightleftharpoons H^+(aq) + A^-(aq) \qquad BOH(aq) \rightleftharpoons B^+(aq) + OH^-(aq)$

- HA (aq) + BOH (aq) \rightleftharpoons H₂O (I) + BA (aq) salt water

What is a buffer?

<u>Buffers</u>: A solution that resists changes in pH when small amounts of acids or bases are added.

Buffers are typically made from solutions of a weak acid (HA) and its conjugate-base (A⁻), or from solutions of a weak base and its conjugate-acid.

We will also learn how to make buffers through titrations, but not now.

Let's run through how to make buffers

Buffers: A solution that resists changes in pH when small amounts of acids or bases are added. Buffers are typically made from solutions of a weak acid (HA) and its conjugate-base (A⁻).

Previously, we looked at the equilibrium for weak-acid dissociation.

Consider a solution of 0.40 M acetic acid (CH_3COOH , $K_a = 1.76 \times 10^{-5}$). We could calculate the pH using an ICE such as the one below.

Notice that initially we only have acid in solution.

What if we add 0.20 M of Na(CH₃COO) to the 0.40 M CH₃COOH solution? We know the salt will dissociate:

 $Na(CH_3COO) \rightarrow Na^+ + CH_3COO^-$

Pay attention to how this affects the ICE chart now:

	acid			C	onjugate-base
	CH ₃ COOH	\\	H+	+	CH ₃ COO ⁻
Ι	0.40 M		0		0.20 ←
С	- X		+ x		+ X
Е	0.40 – x		X		0.20 + x

Notice we now have acid and the conjugate-base in solution.

Calculations of pH for buffers

Consider a solution of 0.40 M acetic acid (CH_3COOH , $K_a = 1.76 \times 10^{-5}$). We could calculate the pH using an ICE such as the one below.

		acid		conjugate-base		acid		conjugate-base
_		CH₃COOH ⇒	H+	+ CH ₃ COO ⁻		CH₃COOH ⇒	H+	+ CH ₃ COO ⁻
	Ι	0.40 M	0	0		0.40 M	0	0.20
	С	- X	+ x	+ x	С	- X	+ x	+ x
	Е	0.40 – x	X	X	E	0.40 – x	X	0.20 + x

Notice that initially we only have acid in solution.

To find the pH of this weak acid solution, we can set up an equilibrium expression, approximate x to be negligibly small, solve for $x = [H^+]$, and then pH:

$$K_{a} = \frac{x^{2}}{0.40 - x} \approx \frac{x^{2}}{0.40} = 1.76 \times 10^{-5}$$
$$x = [H^{+}]$$
$$pH = -\log[H^{+}]$$

What if we add 0.20 M of Na(CH₃COO) to the 0.40 M CH₃COOH solution? We know the salt will dissociate:

 $Na(CH_3COO) \rightarrow Na^+ + CH_2COO^-$

Notice we now have acid and the conjugate-base in solution.

To find the pH of this weak acid buffer, we can set up an equilibrium expression, approximate x to be negligibly smaller, solve for $x = [H^+]$, and then pH:

$$K_{a} = \frac{(x)(0.20 + x)}{0.40 - x} \approx \frac{0.20x}{0.40} = 1.76 \times 10^{-5}$$
$$x = [H^{+}]$$
$$pH = -\log[H^{+}]$$

Let's work this out more explicitly!

Henderson-Hasselbalch and pH of buffers

What if we add 0.20 M of Na(CH₃COO) to the 0.40 M CH₃COOH solution? We know the salt will dissociate:

conjugate-base acid CH₃COOH CH₃COO⁻ H^+ \rightleftharpoons +0.40 M 0 0.20 С + X + X - X Ε 0.40 – x 0.20 + xХ

 $Na(CH_3COO) \rightarrow Na^+ + CH_3COO^-$

Notice we now have acid and the conjugate-base in solution.

To find the pH of this weak acid buffer, we can set up an equilibrium expression, approximate x to be negligibly smaller, solve for $x = [H^+]$, and then pH:

$$K_{a} = \frac{(x)(0.20 + x)}{0.40 - x} \approx \frac{0.20x}{0.40} = 1.76 \times 10^{-5}$$
$$x = [H^{+}]$$
$$pH = -\log[H^{+}]$$

This is the Henderson-Hasselbalch equation and it allows you to estimate (or calculate) the pH of a buffer if you know the *K*_a of the acid and the concentrations of the weak acid and its conjugate-base in solution.

What is a (good) buffer?

Buffers: A solution that resists changes in pH when small amounts of acids or bases are added.

Buffers are typically made from solutions of a weak acid (HA) and its conjugate-base (A⁻), or from solutions of a weak base and its conjugate-acid.

The buffer shown below is a very good buffer. But why? Think about how buffers work.

	acid	conjugate-base		
	CH ₃ COOH ⇒	H+ +	CH ₃ COO ⁻	
I	0.40 M	0	0.40	
С	- X	+ x	+ x	
Е	0.40 – x	X	0.40 + x	

Good buffers have $[HA] = [A^{-}]$. What about their pH's?

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$$

 $pH = pK_a$

Notice that we have equal amounts of acid and the conjugate-base in solution, $[HA] = [A^{-}]$.

Why is this good? Well, it means we have a system that can act as both an acid or base depending on what we throw into the solution.

- If we add acid, the acid will react with the conjugate-base side.
- If we add base, the base will react with the acid side.

Regardless of what we add, our buffer will have enough acid or conjugate-base to resist drastic changes in pH.

You have a 1.0 L solution containing 0.40 M CH₃COOH ($K_a = 1.76 \times 10^{-5}$) and 0.20 M Na(CH₃COO).

Calculate the pH of this buffer solution if 0.10 mol HCl is added. Assume no volume change.

- answer -

You have a 1.0 L solution containing 0.40 M CH₃COOH ($K_a = 1.76 \times 10^{-5}$) and 0.20 M Na(CH₃COO). Calculate the pH of this buffer solution if 0.10 mol HCl is added. Assume no volume change.

- answer -

First, ask yourself what HCI will react with in the weak-acid dissociation equilibrium: the acid or its conjugate-base? Since HCl is an acid, it should react with the conjugate-base via:

We can construct an ICF chart in moles to help us out here.

	CH ₃ COO ⁻	+	H+	\rightarrow	CH ₃ COOH
Ι	0.20 mol		0.10 mol		0.40 mol
С	- 0.10		- 0.10		+ 0.10
F	0.10		0		0.50

Now, just apply the Henderson-Hasselbalch equation to estimate the pH:

$$pH = pK_a + \log\left(\frac{[CH_3C00^-]}{[CH_3C00H]}\right)$$
$$= -\log(1.76 \times 10^{-5}) + \log\left(\frac{\frac{0.10 \text{ mol}}{1.0 \text{ L}}}{\frac{0.50 \text{ mol}}{1.0 \text{ L}}}\right)$$
$$= 4.754_5 - 0.69_9$$
$$pH = 4.06$$

$CH_3COO^- + H^+ \rightarrow CH_3COOH$

Why ICF and not ICE?

Remember that ICE charts are for equilibrium processes. At the instant of mixing HCl into the buffer, we get a non-equilibrium and unidirectional reaction between the conjugate-base and H⁺ to form acid. The ICF chart is still *useful* because it simplifies the stoichiometry calculations we would normally have to do for non-equilibrium chemical reactions: (1) find the limiting reactant, (2) determine how much excess reactant is left, and (3) determine how much product is formed.

How did I know what goes in the "C" (change) row?

Since this is a non-equilibrium reaction, we have a limiting reactant. You could figure out the limiting reactant through a number of ways. The easiest way is to notice that the reaction is 1:1 for CH₃COO⁻:H⁺ but we have a ratio of 0.40:0.10, so H⁺ is limiting.

You have a 1.0 L solution containing 0.40 M CH₃COOH ($K_a = 1.76 \times 10^{-5}$) and 0.20 M Na(CH₃COO).

Calculate the pH of this buffer solution if 0.20 mol NaOH is added. Assume no volume change.

- answer -

You have a 1.0 L solution containing 0.40 M CH₃COOH ($K_a = 1.76 \times 10^{-5}$) and 0.20 M Na(CH₃COO).

Calculate the pH of this buffer solution if 0.20 mol NaOH is added. Assume no volume change. - answer -

First, ask yourself what NaOH will react with in the weak-acid dissociation equilibrium: the acid or its conjugate-base?

Since NaOH is a base, it should react with the acid via:

We can construct an ICF chart in moles to help us out here.

	CH₃COOH	+	OH-	→	CH ₃ COO ⁻
I	0.40 mol		0.20 mol		0.20 mol
С	- 0.20		- 0.20		+ 0.20
F	0.20		0		0.40

Now, just apply the Henderson-Hasselbach equation to estimate the pH:

$$pH = pK_a + \log\left(\frac{[CH_3C00^-]}{[CH_3C00H]}\right)$$
$$= -\log(1.76 \times 10^{-5}) + \log\left(\frac{\frac{0.40 \text{ mol}}{1.0 \text{ L}}}{\frac{0.20 \text{ mol}}{1.0 \text{ L}}}\right)$$
$$= 4.754_5 - 0.30_1$$
$$pH = 5.06$$

- $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$