ACIDS © BASES BUFFERS \& THE COMMON ION EFFECT

Inventory of what we've covered so far

We have considered acids and bases separately:

$$
\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \quad \mathrm{BOH}(\mathrm{aq}) \rightleftharpoons \mathrm{B}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

We have considered mixing acids and bases together:

We have considered how aqueous salts (BA) can be acidic, basic, or neutral in water.

Now we will consider the mixture of weak acids/bases with salts to form buffers.

What is a buffer?

Buffers: A solution that resists changes in pH when small amounts of acids or bases are added.

Buffers are typically made from solutions of a weak acid (HA) and its conjugate-base (A^{-}), or from solutions of a weak base and its conjugate-acid.

We will also learn how to make buffers through titrations, but not now.

Let's run through how to make buffers

Buffers: A solution that resists changes in pH when small amounts of acids or bases are added.
Buffers are typically made from solutions of a weak acid (HA) and its conjugate-base (A^{-}).
Previously, we looked at the equilibrium for weak-acid dissociation.

Consider a solution of 0.40 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$, $K_{\mathrm{a}}=1.76 \times 10^{-5}$). We could calculate the pH using an ICE such as the one below.

What if we add 0.20 M of $\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$ to the 0.40 M $\mathrm{CH}_{3} \mathrm{COOH}$ solution? We know the salt will dissociate:

$$
\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right) \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

Pay attention to how this affects the ICE chart now:

Notice we now have acid and the conjugate-base in solution.

Calculations of pH for buffers

Consider a solution of 0.40 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$, $K_{\mathrm{a}}=1.76 \times 10^{-5}$). We could calculate the pH using an ICE such as the one below.

\longrightarrow| | acid | | |
| :---: | :---: | :---: | :---: |
| | | | |
| | $\mathrm{CH}_{3} \mathrm{COOH}$ | \rightleftharpoons | H^{+} |
| I | 0.40 M | | + |
| C | -x | $\mathrm{CH}_{3} \mathrm{COO}^{-}$ | |
| E | $0.40-\mathrm{x}$ | | +x |
| 0 | | | |

Notice that initially we only have acid in solution.
To find the pH of this weak acid solution, we can set up an equilibrium expression, approximate x to be negligibly small, solve for $\mathrm{x}=\left[\mathrm{H}^{+}\right]$, and then pH :

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\mathrm{x}^{2}}{0.40-\mathrm{x}} \approx \frac{\mathrm{x}^{2}}{0.40}=1.76 \times 10^{-5} \\
\mathrm{x}=\left[\mathrm{H}^{+}\right] \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\end{gathered}
$$

What if we add 0.20 M of $\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$ to the 0.40 M $\mathrm{CH}_{3} \mathrm{COOH}$ solution? We know the salt will dissociate:

$$
\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right) \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

\longrightarrow| | acid | | |
| :---: | :---: | :---: | :---: |
| | $\mathrm{CH}_{3} \mathrm{COOH}$ | \rightleftharpoons | H^{+} |
| I | 0.40 M | | + |
| C | -x | $\mathrm{CH}_{3} \mathrm{COO}^{-}$ | |
| E | $0.40-\mathrm{x}$ | | +x |
| | | x | 0.20 |

Notice we now have acid and the conjugate-base in solution.
To find the pH of this weak acid buffer, we can set up an equilibrium expression, approximate x to be negligibly smaller, solve for $\mathrm{x}=\left[\mathrm{H}^{+}\right]$, and then pH :

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{(\mathrm{x})(0.20+\mathrm{x})}{0.40-\mathrm{x}} \approx \frac{0.20 \mathrm{x}}{0.40}=1.76 \times 10^{-5} \\
\mathrm{x}=\left[\mathrm{H}^{+}\right] \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\end{gathered}
$$

Henderson-Hasselbalch and pH of buffers

What if we add 0.20 M of $\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$ to the 0.40 M $\mathrm{CH}_{3} \mathrm{COOH}$ solution? We know the salt will dissociate:

$$
\mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right) \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

Notice we now have acid and the conjugate-base in solution.
To find the pH of this weak acid buffer, we can set up an equilibrium expression, approximate x to be negligibly smaller, solve for $\mathrm{x}=\left[\mathrm{H}^{+}\right]$, and then pH :

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{(\mathrm{x})(0.20+\mathrm{x})}{0.40-\mathrm{x}} \approx \frac{0.20 \mathrm{x}}{0.40}=1.76 \times 10^{-5} \\
\mathrm{x}=\left[\mathrm{H}^{+}\right] \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\end{gathered}
$$

Let's pick apart this equation:

Now, take the log of both sides and rearrange a bit:

$$
-\log \left(\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)=-\log \left(K_{\mathrm{a}}\right)
$$

$$
\begin{aligned}
-\log \left[\mathrm{H}^{+}\right]-\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) & =\mathrm{p} K_{\mathrm{a}} \\
{\underset{\mathrm{pH}}{ }}^{\mathrm{pH}} & =\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)
\end{aligned}
$$

This is the Henderson-Hasselbalch equation and it allows you to estimate (or calculate) the pH of a buffer if you know the K_{a} of the acid and the concentrations of the weak acid and its conjugate-base in solution.

What is a (good) buffer?

Buffers: A solution that resists changes in pH when small amounts of acids or bases are added.

Buffers are typically made from solutions of a weak acid (HA) and its conjugate-base (A^{-}), or from solutions of a weak base and its conjugate-acid.

The buffer shown below is a very good buffer. But why? Think about how buffers work.

acid				conjugate-base	
	$\mathrm{CH}_{3} \mathrm{COOH}$	\rightleftharpoons	H^{+}	+	
$\mathrm{CH}_{3} \mathrm{COO}^{-}$					
I	0.40 M	0		0.40	
C	-x	+x		+x	
E	$0.40-\mathrm{x}$	x		$0.40+\mathrm{x}$	

Good buffers have $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$. What about their pH 's?

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) \\
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}
\end{aligned}
$$

Notice that we have equal amounts of acid and the conjugate-base in solution, $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$.

Why is this good? Well, it means we have a system that can act as both an acid or base depending on what we throw into the solution.

- If we add acid, the acid will react with the conjugate-base side.
- If we add base, the base will react with the acid side.

Regardless of what we add, our buffer will have enough acid or conjugate-base to resist drastic changes in pH .

PRACTICE PROBLEM 1

You have a 1.0 L solution containing $0.40 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(K_{\mathrm{a}}=1.76 \times 10^{-5}\right)$ and $0.20 \mathrm{M} \mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$.
Calculate the pH of this buffer solution if 0.10 mol HCl is added. Assume no volume change.

- answer -

PRACTICE PROBLEM 1

You have a 1.0 L solution containing $0.40 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(K_{\mathrm{a}}=1.76 \times 10^{-5}\right)$ and $0.20 \mathrm{M} \mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$.
Calculate the pH of this buffer solution if 0.10 mol HCl is added. Assume no volume change.

- answer -

First, ask yourself what HCl will react with in the weak-acid dissociation equilibrium: the acid or its conjugate-base?
Since HCl is an acid, it should react with the conjugate-base via:

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}
$$

We can construct an ICF chart in moles to help us out here.

	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	+	H^{+}	\rightarrow
CH	$\mathrm{COOH}_{3} \mathrm{COOH}$			
C	0.20 mol		0.10 mol	
F	-0.10		-0.10	

Why ICF and not ICE?

Remember that ICE charts are for equilibrium processes. At the instant of mixing HCl into the buffer, we get a non-equilibrium and unidirectional reaction between the conjugate-base and H^{+}to form acid. The ICF chart is still useful because it simplifies the stoichiometry calculations we would normally have to do for non-equilibrium chemical reactions: (1) find the limiting reactant, (2) determine how much excess reactant is left, and (3) determine how much product is formed.

How did I know what goes in the "C" (change) row?

Since this is a non-equilibrium reaction, we have a limiting reactant. You could figure out the limiting reactant through a number of ways. The easiest way is to notice that the reaction is $1: 1$ for $\mathrm{CH}_{3} \mathrm{COO}^{-}: \mathrm{H}^{+}$but we have a ratio of 0.40:0.10, so H^{+}is limiting.

Now, just apply the Henderson-Hasselbalch equation to estimate the pH :

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right) \\
& =-\log \left(1.76 \times 10^{-5}\right)+\log \left(\frac{\frac{0.10 \mathrm{~mol}}{1.0 \mathrm{~L}}}{\frac{0.50 \mathrm{~mol}}{1.0 \mathrm{~L}}}\right) \\
& =4.754_{5}-0.69 \mathrm{~g} \\
\mathrm{pH} & =4.06
\end{aligned}
$$

PRACTICE PROBLEM 2

You have a 1.0 L solution containing $0.40 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(K_{\mathrm{a}}=1.76 \times 10^{-5}\right)$ and $0.20 \mathrm{M} \mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$.
Calculate the pH of this buffer solution if 0.20 mol NaOH is added. Assume no volume change.

- answer -

PRACTICE PROBLEM 2

You have a 1.0 L solution containing $0.40 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(K_{\mathrm{a}}=1.76 \times 10^{-5}\right)$ and $0.20 \mathrm{M} \mathrm{Na}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$.
Calculate the pH of this buffer solution if 0.20 mol NaOH is added. Assume no volume change.

- ansceer -

First, ask yourself what NaOH will react with in the weak-acid dissociation equilibrium: the acid or its conjugate-base?
Since NaOH is a base, it should react with the acid via:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

We can construct an ICF chart in moles to help us out here.

	$\mathrm{CH}_{3} \mathrm{COOH}$	+	OH^{-}	\rightarrow
$\mathrm{CH}_{3} \mathrm{COO}^{-}$				
I	0.40 mol	0.20 mol	0.20 mol	
C	-0.20	-0.20		+0.20
F	0.20	0		0.40

Now, just apply the Henderson-Hasselbach equation to estimate the pH :

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right) \\
& =-\log \left(1.76 \times 10^{-5}\right)+\log \left(\frac{\frac{0.40 \mathrm{~mol}}{1.0 \mathrm{~L}}}{\frac{0.20 \mathrm{~mol}}{1.0 \mathrm{~L}}}\right) \\
& =4.754_{5}-0.30_{1} \\
\mathrm{pH} & =5.06
\end{aligned}
$$

