1. Some fundamental calculations:
a. Calculate the number of oxygen atoms in a 288 amu sample.

$$
288 \mathrm{amu} \times \frac{1 \mathrm{atom} 0}{16.00 \mathrm{amu}}=18 \mathrm{atoms} 0
$$

b. Calculate the mass (in amu) of 51 Na atoms.

$$
51 \text { atoms } \mathrm{Na} \times \frac{22.99 \mathrm{amu}}{1 \text { atom } \mathrm{Na}}=1173 \mathrm{amu}
$$

c. Calculate the number of moles in a sample with 5.00×10^{20} atoms of Cr .

$$
5.00 \times 10^{20} \text { atoms } \mathrm{Cr} \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { atom }}=8.30 \times 10^{-4} \mathrm{~mol} \mathrm{Cr}
$$

d. Calculate the mass of the sample in part (c).

$$
5.00 \times 10^{20} \text { atoms } \mathrm{Cr} \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { atom }} \times \frac{52.00 \mathrm{~g} \mathrm{Cr}}{1 \mathrm{~mol} \mathrm{Cr}}=4.32 \times 10^{-2} \mathrm{~g} \mathrm{Cr}
$$

e. How many atoms of Si are in a 5.68 mg sample?

$$
5.68 \mathrm{mg} \mathrm{Si} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.09 \mathrm{~g} \mathrm{Si}} \times \frac{6.022 \times 10^{23} \mathrm{atom}}{1 \mathrm{~mol}}=1.22 \times 10^{-20} \mathrm{atoms} \mathrm{Si}
$$

f. How many grams of aluminum sulfate are in a 0.630 mol sample?

$$
0.630 \mathrm{~mol} \mathrm{Al} 2\left(\mathrm{SO}_{4}\right)_{3} \times \frac{342.14 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{1 \mathrm{~mol} \mathrm{Al}}\left(\mathrm{SO}_{4}\right)_{3} \quad=216 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

g. How many moles are in 50.0 g sample of ammonium carbonate?

$$
50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=0.520 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

h. What is the mass of one molecule of dinitrogen tetroxide?

$$
1 \text { molecule } \mathrm{N}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { molecules }} \times \frac{92.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}=1.528 \times 10^{-22} \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}
$$

2. Translate the following descriptions into a balanced chemical equation.
a. Solid iron metal reacts with oxygen gas to produce solid iron (III) oxide.

$$
4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)
$$

b. The combustion of solid iron (II) oxide produces solid iron (III) oxide.

$$
4 \mathrm{FeO}(s)+1 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)
$$

c. Solid potassium metal reacts with water to make hydrogen gas and aqueous potassium hydroxide.

$$
2 \mathrm{~K}(s)+2 \mathrm{H}_{2} \mathrm{O}(I) \rightarrow 1 \mathrm{H}_{2}(g)+2 \mathrm{KOH}(a q)
$$

d. Propane gas combusts to give off carbon dioxide and water vapor.

$$
1 \mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

e. Dihydrogen sulfide gas is bubbled through an aqueous solution of lead (II) nitrate and solid lead (II) sulfide forms alongside aqueous nitric acid.

$$
1 \mathrm{H}_{2} \mathrm{~S}(g)+1 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow 1 \mathrm{PbS}(s)+2 \mathrm{HNO}_{3}(a q)
$$

f. Sulfuric acid is poured onto solid aluminum to give off hydrogen gas and a solution of aluminum sulfate.

$$
3 \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{Al}(s) \rightarrow 3 \mathrm{H}_{2}(g)+1 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)
$$

g. A copper wire dipped in a solution of silver (I) nitrate produces silver metal and copper (II) nitrate solution.

$$
1 \mathrm{Cu}(s)+2 \mathrm{AgNO}_{3}(a q) \rightarrow 2 \mathrm{Ag}(s)+1 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)
$$

3. If you have equal masses of each compound $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, \mathrm{KClO}_{3}\right)$, which sample has the greatest number of oxygen atoms?
(Note: There are two ways you can do this problem!)
Method 1: Determine mass percent of O in each. $\rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}: 65 \% \mathrm{O}\left|\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}: 51 \% \mathrm{O}\right| \mathrm{KClO}_{3}: 39 \% \mathrm{O}$
Method 2 (much longer): Determine number of O atoms in each compound.
4. Striking a match results in the following unbalanced chemical reaction:

$$
\ldots \mathrm{P}_{4}(s)+\ldots \mathrm{KClO}_{3}(s) \rightarrow \ldots \ldots \mathrm{KCl}(s)+\ldots \mathrm{P}_{2} \mathrm{O}_{5}(s)
$$

a. Balance the equation above.

$$
3 \mathrm{P}_{4}(s)+10 \mathrm{KClO}_{3}(s) \rightarrow 10 \mathrm{KCl}(s)+6 \mathrm{P}_{2} \mathrm{O}_{5}(s)
$$

b. If 15.0 mg of $\mathrm{P}_{2} \mathrm{O}_{5}$ was produced in this reaction, what masses of P_{4} and KClO_{3} were required?

Start by converting 15.0 mg of $\mathrm{P}_{2} \mathrm{O}_{5}$ to mol of $\mathrm{P}_{2} \mathrm{O}_{5}$:

$$
15.0 \mathrm{mg} \mathrm{P} \mathrm{P}_{2} \mathrm{O}_{5} \times \frac{1 \mathrm{mg}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{P}}{2} \mathrm{O}_{5}{ }_{141.94 g \mathrm{P}_{2} \mathrm{O}_{5}}=1.057 \times 10^{-4} \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}
$$

Now determine how much P_{4} is needed to produce this much $\mathrm{P}_{2} \mathrm{O}_{5}$:

$$
1.057 \times 10^{-4} \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5} \times \frac{3 \mathrm{~mol} \mathrm{P}_{4}}{6 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}} \times \frac{123.88 \mathrm{~g} \mathrm{P}}{4}{ }_{1 \mathrm{~mol} \mathrm{P}_{4}}=6.55 \times 10^{-3} \mathrm{~g}_{4}
$$

Now determine how much KClO_{3} is needed to produce this much $\mathrm{P}_{2} \mathrm{O}_{5}$:

$$
1.057 \times 10^{-4} \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5} \times \frac{10 \mathrm{~mol} \mathrm{KClO}_{3}}{6 \mathrm{~mol} \mathrm{P}} \mathrm{O}_{5} \quad \times \frac{122.55 \mathrm{~g} \mathrm{KClO}_{3}}{1 \mathrm{~mol} \mathrm{KClO}_{3}}=2.16 \times 10^{-2} \mathrm{~g} \mathrm{KClO}_{3}
$$

5. You react 10.0 g of hydrogen gas with 60.0 g of oxygen gas to form water. Determine the amount of water formed and the amount of excess reactant (both in grams) after the reaction is complete.

Balanced chemical equation: $2 \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Now determine whether the limiting reactant is H_{2} or O_{2} gas (two ways):

Method 1:	Method 2:
How much $\mathrm{H}_{2} \mathrm{O}$ can we make from all H_{2} ?	We have 4.96 mol H_{2} and $1.875 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$. How much H_{2}
$10.0 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{H}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{2} \mathrm{O}$	do we need to react with all of the O_{2} ?
$10.0 \mathrm{~g} \mathrm{H}_{2} \times \frac{1}{2.016 \mathrm{~g} \mathrm{H}} \times 2 \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{2}=4.96 \mathrm{~mol} \mathrm{H}$	$1 \mathrm{~mol} \mathrm{O}_{2} \times 2 \mathrm{~mol} \mathrm{H}_{2}$
How much $\mathrm{H}_{2} \mathrm{O}$ can we make from all O_{2} ?	$2 \times \frac{1}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{}$
$60.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=3.75 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	We need $3.75 \mathrm{~mol} \mathrm{H}_{2}$, but have $4.96 \mathrm{~mol} \mathrm{H}_{2}$, so H_{2} is in excess.
Therefore, O_{2} is limiting (makes less $\mathrm{H}_{2} \mathrm{O}$)!	Therefore, O_{2} is limiting!

H_{2} is in excess and we need to use 3.75 mol . Leftover $=4.96 \mathrm{~mol}-3.75 \mathrm{~mol}=1.21 \mathrm{~mol} \mathrm{H}_{2}=2.44 \mathrm{~g} \mathrm{H}$.
From method 1, we know we make $3.75 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ or $67.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
6. Consider mixing an excess of lead (II) nitrate (aq) with 0.0800 mol sodium chloride. Determine the mass of solid lead (II) chloride formed assuming a complete reaction.

Balanced chemical equation: $1 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaCl}(a q) \rightarrow 1 \mathrm{PbCl}_{2}(s)+2 \mathrm{NaNO}_{3}(a q)$
Since we are told $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is in excess, the NaCl is the limiting reactant.
7. The percent by mass of nitrogen is 46.7% for a species containing only nitrogen and oxygen. Which of the following could this species be?

$$
\begin{array}{lllll}
\mathrm{N}_{2} \mathrm{O}_{5} & \mathrm{~N}_{2} \mathrm{O} & \mathrm{NO}_{2} & \mathrm{NO} & \mathrm{NO}_{3}
\end{array}
$$

Assuming a 100 g sample of $\mathrm{N}_{x} \mathrm{O}_{y}$ compound: 46.7 g N and 53.3 g O
Determine the empirical formula:

$$
\begin{aligned}
& 46.7 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=3.333 \mathrm{~mol} \mathrm{~N} \Rightarrow \frac{3.333 \mathrm{~mol} \mathrm{~N}}{3.331}=1 \mathrm{~mol} \mathrm{~N} \\
& 53.3 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=3.331 \mathrm{~mol} \mathrm{O} \Rightarrow \frac{3.331 \mathrm{~mol} \mathrm{O}}{3.331}=1 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Empirical formula: NO
8. If $5.00 \mathrm{~g} \mathrm{of} \mathrm{CH}_{4}$ is burned, what mass of water can be produced?

Balanced chemical equation: $1 \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
5.00 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CH}_{4}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=11.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

