Name: _____

Potentially useful	$\Lambda T_{\rm h} = K_{\rm h} m$	$\Delta T_c = K_c m$	molality $(m) = \frac{n_{\text{solute}}}{1 + 1}$
information:	$\Delta r_{\rm D} = R_{\rm D} m$		kg solvent

A 151 mg sample of caffeine is dissolved in 10.0 g of camphor $\left(K_{\rm f} = 39.7 \frac{^{\circ}{\rm C}}{\rm m}\right)$, and it decreases the freezing point of camphor by 3.07 °C.

Using the freezing point depression data, show that the molar mass of caffeine ($C_8H_{10}N_4O_2$) is approximately 195 g/mol.