Concentration Qualitatively

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2019

www.mioy.org/chem161

What is concentration?

QUANTITY (AMOUNT) PER VOLUME (It's like a density!)

Q1: Which flask is the most concentrated? A1: The concentrations are the same!

Q2: How can we change the concentration? A2: Add more powder mix ... or add/remove water.

MOLARITY (M): Concentration of solution

Concentration =
$$\frac{\text{moles of solute}}{\text{Volume (L) of solution}}$$
; $M = \frac{\text{mol}}{L}$

Think about what concentration means before getting into the math.

Each black dot represents a mole (the quantity/amount)

Dr. Mioy T. Huynh

You have 1.00 mol of sugar ($C_6H_{12}O_6$) in 125.0 mL of solution. Calculate the concentration (in units of molarity).

You have 1.00 mol of sugar ($C_6H_{12}O_6$) in 125.0 mL of solution. Calculate the concentration (in units of molarity).

You have 1.00 mol of sugar ($C_6H_{12}O_6$) in 125.0 mL of solution. Calculate the concentration (in units of molarity).

Concentration =
$$\frac{\# \text{ moles}}{\text{Volume (L)}}$$

= $\frac{1.00 \text{ mol sugar}}{125 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$
= $\frac{8.00 \text{ M}}{1000 \text{ mL}}$

You have 1.00 mol of sugar ($C_6H_{12}O_6$) in 125.0 mL of solution. Calculate the concentration (in units of molarity).

Set up the general formula for molarity (concentration):

Remember that this is just a ratio of moles per volume.

It does not mean you have 8 moles of sugar or that you have 1 L of solution.

You have a 2.50 M sugar solution. Calculate the number of moles of sugar in 300.0 mL of this solution.

You have a 2.50 M sugar solution. Calculate the number of moles of sugar in 300.0 mL of this solution.

You have a 2.50 M sugar solution. Calculate the number of moles of sugar in 300.0 mL of this solution.

Concentration =
$$\frac{\text{\# moles}}{\text{Volume (L)}}$$

2.50 M = $\frac{\text{x mol}}{300 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$
x = 0.750 mol sugar

Set up the general formula for molarity (concentration):

Concentration = $\frac{\text{\# moles}}{\text{Volume (L)}}$ 10.0 M = $\frac{2.00 \text{ mol}}{\text{V}}$ V = 0.200 L

Dr. Mioy T. Huynh

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

Concentration = $\frac{\# \text{ moles}}{\text{Volume (L)}}$ $4.00 \text{ M} = \frac{\text{x mol}}{250.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ x = 1.00 mol sugar

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

Concentration = $\frac{\# \text{ moles}}{\text{Volume (L)}}$ $4.00 \text{ M} = \frac{\text{x mol}}{250.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}}$ x = 1.00 mol sugar

Now, determine the new concentration if double the volume of the solution:

Dr. Mioy T. Huynh

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

Now, determine the new concentration if double the volume of the solution:

Dr. Mioy T. Huynh

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

Now, determine the new concentration if double the volume of the solution:

