Concentration Qualitatively

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

What is concentration?
 QUANTITY (AMOUNT) PER VOLUME

(It's like a density!)

Q1: Which flask is the most concentrated?
A1: The concentrations are the same!
Q2: How can we change the concentration?
A2: Add more powder mix ... or add/remove water.

MOLARITY (M): Concentration of solution

$$
\text { Concentration }=\frac{\text { moles of solute }}{\text { Volume (L) of solution }} \quad ; \quad M=\frac{\mathrm{mol}}{\mathrm{~L}}
$$

Think about what concentration means before getting into the math.

Each black dot represents a mole (the quantity/amount)

You have 1.00 mol of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 125.0 mL of solution. Calculate the concentration (in units of molarity).

You have 1.00 mol of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 125.0 mL of solution. Calculate the concentration (in units of molarity).

Set up the general formula for molarity (concentration):

You have 1.00 mol of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 125.0 mL of solution.

 Calculate the concentration (in units of molarity).Set up the general formula for molarity (concentration):

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
& =\frac{1.00 \mathrm{~mol} \text { sugar }}{125 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
& =8.00 \mathrm{M}
\end{aligned}
$$

You have 1.00 mol of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 125.0 mL of solution. Calculate the concentration (in units of molarity).

Set up the general formula for molarity (concentration):

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
& =\frac{1.00 \mathrm{~mol} \mathrm{sugar}}{125 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
& =8.00 \mathrm{M}
\end{aligned}
$$

Remember that this is just a ratio of moles per volume.
It does not mean you have 8 moles of sugar or that you have 1 L of solution.
\qquad

You have a 2.50 M sugar solution.

 Calculate the number of moles of sugar in 300.0 mL of this solution.Set up the general formula for molarity (concentration):

You have a 2.50 M sugar solution.

 Calculate the number of moles of sugar in 300.0 mL of this solution.Set up the general formula for molarity (concentration):

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
2.50 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{300 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.750 \mathrm{~mol} \text { sugar }
\end{aligned}
$$

You have a 10.0 M sugar solution. What volume of this solution do you need to have 2.00 mol sugar?

You have a 10.0 M sugar solution.

What volume of this solution do you need to have 2.00 mol sugar?

Set up the general formula for molarity (concentration):

You have a 10.0 M sugar solution.

 What volume of this solution do you need to have 2.00 mol sugar?Set up the general formula for molarity (concentration):

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
10.0 \mathrm{M} & =\frac{2.00 \mathrm{~mol}}{\mathrm{~V}} \\
\mathrm{~V} & =0.200 \mathrm{~L}
\end{aligned}
$$

You have a 10.0 M sugar solution.

 What volume of this solution do you need to have 2.00 mol sugar?Set up the general formula for molarity (concentration):

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
10.0 \mathrm{M} & =\frac{2.00 \mathrm{~mol}}{\mathrm{~V}} \\
\mathrm{~V} & =0.200 \mathrm{~L}
\end{aligned}
$$

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
4.00 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{250.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =1.00 \mathrm{~mol} \mathrm{sugar}
\end{aligned}
$$

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
4.00 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{250.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{100 \mathrm{~mL}}} \\
\mathrm{x} & =1.00 \mathrm{~mol} \text { sugar }
\end{aligned}
$$

Now, determine the new concentration if double the volume of the solution:

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
& =\frac{1.00 \mathrm{~mol}}{(250.0 \mathrm{~mL}+250.0 \mathrm{~mL}) \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
& =2.00 \mathrm{M}
\end{aligned}
$$

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

1 mole 250 mL

$$
\mathrm{M}=\frac{1.00 \mathrm{~mol}}{0.2500 \mathrm{~L}}=4.00 \mathrm{M}
$$

Now, determine the new concentration if double the volume of the solution:

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
& =\frac{1.00 \mathrm{~mol}}{(250.0 \mathrm{~mL}+250.0 \mathrm{~mL}) \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
& =2.00 \mathrm{M}
\end{aligned}
$$

You add 250.0 mL of water to 250.0 mL of a 4.00 M sugar solution. Calculate the new concentration (in units of molarity).

First, determine how many moles of sugar are in 250.0 mL of the 4.00 M solution.

Now, determine the new concentration if double the volume of the solution:

$$
\begin{aligned}
\text { Concentration } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
& =\frac{1.00 \mathrm{~mol}}{(250.0 \mathrm{~mL}+250.0 \mathrm{~mL}) \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
& =2.00 \mathrm{M}
\end{aligned}
$$

1 mole 250 mL

$$
\mathrm{M}=\frac{1.00 \mathrm{~mol}}{0.2500 \mathrm{~L}}=4.00 \mathrm{M}
$$

Add 250 mL
of water

1 mole 500 mL

$$
\mathrm{M}=\frac{1.00 \mathrm{~mol}}{0.5000 \mathrm{~L}}=2.00 \mathrm{M}
$$

