Concentration Quantitatively

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

MOLARITY (M): Concentration of solution

$$
\text { Concentration }=\frac{\text { moles of solute }}{\text { Volume (L) of solution }} \quad ; \quad M=\frac{\mathrm{mol}}{\mathrm{~L}}
$$

Think about what concentration means before getting into the math.

Each black dot represents a mole (the quantity/amount)

What is a ppm?

A ppm (part per million) is a unit of concentration. Specifically, it is:

$$
1 \mathrm{ppm}=\frac{1 \mathrm{mg} \text { solute }}{1 \mathrm{~kg} \text { solution }}
$$

A molar (M or $\mathrm{mol} / \mathrm{L}$) is a unit of concentration as well. If a solution of NaCl is 0.80 M , we say:

$$
0.80 \mathrm{M} \mathrm{NaCl}=\frac{0.80 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~L}}
$$

Likewise, a solution of NaCl that is 0.80 ppm is:

$$
0.80 \mathrm{ppm} \mathrm{NaCl}=\frac{0.80 \mathrm{mg} \mathrm{NaCl}}{1 \mathrm{~kg} \text { water }}
$$

We can convert between the two units of concentration using the density of water and the molar mass of NaCl :

$$
0.80 \mathrm{ppm} \mathrm{NaCl}=\frac{0.80 \mathrm{mg} \mathrm{NaCl}}{1 \mathrm{~kg} \text { water }} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times \frac{1 \mathrm{~g} \text { water }}{1 \mathrm{~mL} \text { water }} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}=1.4 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{NaCl}
$$

Consider separate solutions of NaOH and KCI made by dissolving equal masses of solute in equal volumes of solution. Which solution has the greater concentration?

Consider separate solutions of NaOH and KCI made by dissolving equal masses of solute in equal volumes of solution. Which solution has the greater concentration?

Collect the molar masses of NaOH and KCl :
$\mathrm{NaOH}=39.99 \mathrm{~g} / \mathrm{mol}$
$\mathrm{KCl}=74.55 \mathrm{~g} / \mathrm{mol}$

Consider separate solutions of NaOH and KCl made by dissolving

 equal masses of solute in equal volumes of solution. Which solution has the greater concentration?Collect the molar masses of NaOH and KCl :

$$
\begin{aligned}
& \mathrm{NaOH}=39.99 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{KCl}=74.55 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Let's assume you have 10 g of each solute and 1 L of solution.
We can determine the concentration (molarity) of each solution then:

Consider separate solutions of NaOH and KCI made by dissolving

 equal masses of solute in equal volumes of solution. Which solution has the greater concentration?Collect the molar masses of NaOH and KCl :

$$
\begin{aligned}
\mathrm{NaOH} & =39.99 \mathrm{~g} / \mathrm{mol} \\
\mathrm{KCl} & =74.55 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Let's assume you have 10 g of each solute and 1 L of solution.
We can determine the concentration (molarity) of each solution then:

$$
10 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol}}{39.99 \mathrm{~g}}=0.25 \mathrm{~mol} \mathrm{NaOH}
$$

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\operatorname{Volume}(\mathrm{L})} \\
& =\frac{0.25 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}} \\
& =0.25 \mathrm{M}
\end{aligned}
$$

Consider separate solutions of NaOH and KCI made by dissolving equal masses of solute in equal volumes of solution. Which solution has the greater concentration?

Collect the molar masses of NaOH and KCl :

$$
\begin{array}{ll}
\mathrm{NaOH} & =39.99 \mathrm{~g} / \mathrm{mol} \\
\mathrm{KCl} & =74.55 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

Let's assume you have 10 g of each solute and 1 L of solution.
We can determine the concentration (molarity) of each solution then:

$$
10 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol}}{39.99 \mathrm{~g}}=0.25 \mathrm{~mol} \mathrm{NaOH} \quad 10 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol}}{74.55 \mathrm{~g}}=0.134 \mathrm{~mol} \mathrm{KCl}
$$

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
& =\frac{0.25 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}} \\
& =0.25 \mathrm{M}^{\mathrm{L}}
\end{aligned}
$$

$$
\begin{aligned}
{[\mathrm{KCl}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
& =\frac{0.134 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L}} \\
& =0.134 \mathrm{M}
\end{aligned}
$$

Consider separate solutions of NaOH and KCI made by dissolving equal masses of solute in equal volumes of solution. Which solution has the greater concentration?

Collect the molar masses of NaOH and KCl :

$$
\begin{array}{ll}
\mathrm{NaOH} & =39.99 \mathrm{~g} / \mathrm{mol} \\
\mathrm{KCl} & =74.55 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

Let's assume you have 10 g of each solute and 1 L of solution.
We can determine the concentration (molarity) of each solution then:

$$
\begin{array}{rlrl}
10 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol}}{39.99 \mathrm{~g}}=0.25 \mathrm{~mol} \mathrm{NaOH} & 10 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol}}{74.55 \mathrm{~g}}=0.134 \mathrm{~mol} \mathrm{KCl} \\
{[\mathrm{NaOH}]} & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} & {[\mathrm{KCl}]} & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
& =\frac{0.25 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}} & & =\frac{0.134 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L}} \\
& =0.25 \mathrm{M} & & =0.134 \mathrm{M}
\end{array}
$$

Consider separate solutions of NaOH and KCI made by dissolving 125.0 g of each solute in 250.0 mL of solution. Calculate the concentration of each solution.

Consider separate solutions of NaOH and KCl made by dissolving 125.0 g of each solute in 250.0 mL of solution. Calculate the concentration of each solution.

Collect the molar masses of NaOH and KCl :
$\mathrm{NaOH}=39.99 \mathrm{~g} / \mathrm{mol}$
$\mathrm{KCl}=74.55 \mathrm{~g} / \mathrm{mol}$

Consider separate solutions of NaOH and KCI made by dissolving

 125.0 g of each solute in 250.0 mL of solution. Calculate the concentration of each solution.Collect the molar masses of NaOH and KCl :
$\mathrm{NaOH}=39.99 \mathrm{~g} / \mathrm{mol}$
$\mathrm{KCl}=74.55 \mathrm{~g} / \mathrm{mol}$
First, determine the number of moles.
Second, determine the concentration (molarity) of each solution:

Consider separate solutions of NaOH and KCI made by dissolving

 125.0 g of each solute in 250.0 mL of solution. Calculate the concentration of each solution.Collect the molar masses of NaOH and KCl :

$$
\begin{array}{ll}
\mathrm{NaOH} & =39.99 \mathrm{~g} / \mathrm{mol} \\
\mathrm{KCl} & =74.55 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

First, determine the number of moles.
Second, determine the concentration (molarity) of each solution:

$$
125.0 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol}}{39.99 \mathrm{~g}}=3.125_{8} \mathrm{~mol} \mathrm{NaOH} \quad 125.0 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol}}{74.55 \mathrm{~g}}=1.676_{7} \mathrm{~mol} \mathrm{KCl}
$$

Consider separate solutions of NaOH and KCI made by dissolving 125.0 g of each solute in 250.0 mL of solution. Calculate the concentration of each solution.

Collect the molar masses of NaOH and KCl :

$$
\begin{array}{ll}
\mathrm{NaOH} & =39.99 \mathrm{~g} / \mathrm{mol} \\
\mathrm{KCl} & =74.55 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

First, determine the number of moles.
Second, determine the concentration (molarity) of each solution:

$$
\begin{array}{rlrl}
125.0 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol}}{39.99 \mathrm{~g}}=3.125_{8} \mathrm{~mol} \mathrm{NaOH} & 125.0 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol}}{74.55 \mathrm{~g}}=1.676_{7} \mathrm{~mol} \mathrm{KCl} \\
{[\mathrm{NaOH}]} & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} & {[\mathrm{KCl}]} & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
& =\frac{3.125_{8} \mathrm{~mol} \mathrm{NaOH}}{0.2500 \mathrm{~L}} & & =\frac{1.676_{7} \mathrm{~mol} \mathrm{KCl}}{0.2500 \mathrm{~L}} \\
& =12.50 \mathrm{M} & & =6.707 \mathrm{M}
\end{array}
$$

Because NaOH has a smaller molar mass, we have more moles of $\mathrm{NaOH} \rightarrow$ greater concentration/molarity.

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution.
How do you make such a solution?

We have a 0.800 M solution of NaOH .
You need 75.0 mL of a 0.35 M solution.
How do you make such a solution?
There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

We have a 0.800 M solution of NaOH .

You need 75.0 mL of a 0.35 M solution.
How do you make such a solution?
There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.
Step 1:
Determine how many moles of NaOH would be required to produce 75.0 mL of 0.35 M NaOH .

We can find out by setting up the expression for molarity and solving for the \# of moles:

We have a 0.800 M solution of NaOH .
 You need 75.0 mL of a 0.35 M solution.
 How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.
Step 1:
Determine how many moles of NaOH would be required to produce 75.0 mL of 0.35 M NaOH .

We can find out by setting up the expression for molarity and solving for the \# of moles:

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
0.35 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{75.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.026_{3} \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution. How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

Step 1:
Determine how many moles of NaOH would be required to produce 75.0 mL of 0.35 M NaOH .

We can find out by setting up the expression for molarity and solving for the \# of moles:

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.35 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{75.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.026_{3} \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

Step 2:
How much of the 0.800 M NaOH solution contains 0.026_{3} mol of NaOH ?

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.800 \mathrm{M} & =\frac{0.026_{3} \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~V}} \\
\mathrm{~V} & =0.032_{8} \mathrm{~L}
\end{aligned}
$$

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution. How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

Step 1:
Determine how many moles of NaOH would be required to produce 75.0 mL of 0.35 M NaOH .

We can find out by setting up the expression for molarity and solving for the \# of moles:

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.35 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{75.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.026_{3} \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

Step 2:
How much of the 0.800 M NaOH solution contains 0.026_{3} mol of NaOH ?

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.800 \mathrm{M} & =\frac{0.026_{3} \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~V}} \\
\mathrm{~V} & =0.032_{8} \mathrm{~L}
\end{aligned}
$$

Step 3:
Find the amount of water needed to dilute this sample:

$$
\left(75.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)-0.032_{8} \mathrm{~L}=0.042 \mathrm{~L} \text { water }
$$

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution. How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

Step 1:
Determine how many moles of NaOH would be required to produce 75.0 mL of 0.35 M NaOH .

We can find out by setting up the expression for molarity and solving for the \# of moles:

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.35 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{75.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.026_{3} \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

Step 2:
How much of the 0.800 M NaOH solution contains 0.026_{3} mol of NaOH ?

$$
\begin{aligned}
{[\mathrm{NaOH}] } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.800 \mathrm{M} & =\frac{0.026_{3} \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~V}} \\
\mathrm{~V} & =0.032_{8} \mathrm{~L}
\end{aligned}
$$

Step 3:
Find the amount of water needed to dilute this sample:

$$
\left(75.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)-0.032_{8} \mathrm{~L}=0.042 \mathrm{~L} \text { water }
$$

We can make 75.0 mL of a 0.35 M NaOH solution by taking 0.033 L of a 0.800 M NaOH solution and diluting it with 0.042 L of water.

We have a 0.800 M solution of NaOH .
You need 75.0 mL of a 0.35 M solution.
How do you make such a solution?
There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

We can make 75.0 mL of a 0.35 M NaOH solution by taking 0.033 L of a 0.800 M NaOH solution and diluting it with 0.042 L of water.

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution. How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

Alternative solution:

You can use the following equation to solve for the volume $\left(\mathrm{V}_{2}\right)$ of the 0.800 M solution $\left(\mathrm{M}_{2}\right)$ that would contain the same number of moles as $75 \mathrm{~mL}\left(\mathrm{~V}_{1}\right)$ of the 0.35 M solution $\left(\mathrm{M}_{1}\right)$:

We can make 75.0 mL of a 0.35 M NaOH solution by taking 0.033 L of a 0.800 M NaOH solution and diluting it with 0.042 L of water.

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution. How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

Alternative solution:

You can use the following equation to solve for the volume $\left(\mathrm{V}_{2}\right)$ of the 0.800 M solution $\left(\mathrm{M}_{2}\right)$ that would contain the same number of moles as $75 \mathrm{~mL}\left(\mathrm{~V}_{1}\right)$ of the 0.35 M solution $\left(\mathrm{M}_{1}\right)$:

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
(0.35 \mathrm{M})(75.0 \mathrm{~mL}) & =(0.800 \mathrm{M}) \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =0.032_{8} \mathrm{~L}
\end{aligned}
$$

We can make 75.0 mL of a 0.35 M NaOH solution by taking 0.033 L of a 0.800 M NaOH solution and diluting it with 0.042 L of water.

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution. How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

Alternative solution:

You can use the following equation to solve for the volume $\left(\mathrm{V}_{2}\right)$ of the 0.800 M solution $\left(\mathrm{M}_{2}\right)$ that would contain the same number of moles as $75 \mathrm{~mL}\left(\mathrm{~V}_{1}\right)$ of the 0.35 M solution $\left(\mathrm{M}_{1}\right)$:

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
(0.35 \mathrm{M})(75.0 \mathrm{~mL}) & =(0.800 \mathrm{M}) \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =0.032_{8} \mathrm{~L}
\end{aligned}
$$

Note: It's not necessary to have concentration in M (mol/L) and V in L when we use this equation. Try it with units of Lo to convince yourself this works!

We can make 75.0 mL of a 0.35 M NaOH solution by taking 0.033 L of a 0.800 M NaOH solution and diluting it with 0.042 L of water.

We have a 0.800 M solution of NaOH . You need 75.0 mL of a 0.35 M solution. How do you make such a solution?

There are two ways to change the concentration: (1) change the number of moles and (2) change the volume.

Alternative solution:

You can use the following equation to solve for the volume $\left(\mathrm{V}_{2}\right)$ of the 0.800 M solution $\left(\mathrm{M}_{2}\right)$ that would contain the same number of moles as $75 \mathrm{~mL}\left(\mathrm{~V}_{1}\right)$ of the 0.35 M solution $\left(\mathrm{M}_{1}\right)$:

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
(0.35 \mathrm{M})(75.0 \mathrm{~mL}) & =(0.800 \mathrm{M}) \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =0.032_{8} \mathrm{~L}
\end{aligned}
$$

Note: It's not necessary to have concentration in M (mol/L) and V in L when we use this equation. Try it with units of L to convince yourself this works!

Find the amount of water needed to dilute this sample:

$$
\left(75.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)-0.032_{8} \mathrm{~L}=0.042 \mathrm{~L} \text { water }
$$

We can make 75.0 mL of a 0.35 M NaOH solution by taking 0.033 L of a 0.800 M NaOH solution and diluting it with 0.042 L of water.

You prepare 525 mL of a $\mathbf{0 . 5 0} \mathbf{~ M ~ H I ~ s o l u t i o n . ~ A f t e r ~ t h r e e ~ d a y s ~ o f ~ s i t t i n g ~ o n ~}$ the bench, its molarity if now 0.82 M .
How much water has evaporated?

You prepare 525 mL of a $\mathbf{0 . 5 0} \mathbf{~ M ~ H I ~ s o l u t i o n . ~ A f t e r ~ t h r e e ~ d a y s ~ o f ~ s i t t i n g ~ o n ~}$ the bench, its molarity if now 0.82 M . How much water has evaporated?

Recognize that we have the same number of moles since only the water evaporates. The concentration increases because we have less volume of water per mole of HI.

You prepare 525 mL of a 0.50 M HI solution. After three days of sitting on the bench, its molarity if now 0.82 M . How much water has evaporated?

Recognize that we have the same number of moles since only the water evaporates. The concentration increases because we have less volume of water per mole of HI.

So, first determine how many moles are in your original solution:

You prepare 525 mL of a 0.50 M HI solution. After three days of sitting on the bench, its molarity if now 0.82 M . How much water has evaporated?

Recognize that we have the same number of moles since only the water evaporates. The concentration increases because we have less volume of water per mole of HI.

So, first determine how many moles are in your original solution:

$$
\begin{aligned}
{[\mathrm{HI}] } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
0.50 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{525 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{100 \mathrm{~mL}}} \\
\mathrm{x} & =0.26_{3} \mathrm{~mol} \mathrm{HI}
\end{aligned}
$$

You prepare 525 mL of a 0.50 M HI solution. After three days of sitting on the bench, its molarity if now 0.82 M . How much water has evaporated?

Recognize that we have the same number of moles since only the water evaporates. The concentration increases because we have less volume of water per mole of HI.

So, first determine how many moles are in your original solution:

$$
\begin{aligned}
{[\mathrm{HI}] } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
0.50 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{525 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.26_{3} \mathrm{~mol} \mathrm{HI}
\end{aligned}
$$

Now find out what volume of the 0.82 M solution contains this many moles of HI :

You prepare 525 mL of a 0.50 M HI solution. After three days of sitting on the bench, its molarity if now 0.82 M . How much water has evaporated?

Recognize that we have the same number of moles since only the water evaporates. The concentration increases because we have less volume of water per mole of HI.

So, first determine how many moles are in your original solution:

$$
\begin{aligned}
{[\mathrm{HI}] } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
0.50 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{525 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.26_{3} \mathrm{~mol} \mathrm{HI}
\end{aligned}
$$

Now find out what volume of the 0.82 M solution contains this many moles of HI :

$$
\begin{aligned}
0.82 \mathrm{M} & =\frac{0.26_{3} \mathrm{~mol} \mathrm{HI}}{\mathrm{~V}} \\
\mathrm{~V} & =0.32 \mathrm{~L}=320 \mathrm{~mL}
\end{aligned}
$$

You prepare 525 mL of a 0.50 M HI solution. After three days of sitting on the bench, its molarity if now 0.82 M . How much water has evaporated?

Recognize that we have the same number of moles since only the water evaporates. The concentration increases because we have less volume of water per mole of HI.

So, first determine how many moles are in your original solution:

$$
\begin{aligned}
{[\mathrm{HI}] } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
0.50 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{525 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.26_{3} \mathrm{~mol} \mathrm{HI}
\end{aligned}
$$

Now find out what volume of the 0.82 M solution contains this many moles of HI :

$$
\begin{aligned}
0.82 \mathrm{M} & =\frac{0.26_{3} \mathrm{~mol} \mathrm{HI}}{\mathrm{~V}} \\
\mathrm{~V} & =0.32 \mathrm{~L}=320 \mathrm{~mL}
\end{aligned}
$$

So, $525 \mathrm{~mL}-320.1 \mathrm{~mL}=2.0 \times 10^{2} \mathrm{~mL}$ of water evaporated.

You prepare 525 mL of a 0.50 M HI solution. After three days of sitting on the bench, its molarity if now 0.82 M . How much water has evaporated?

Recognize that we have the same number of moles since only the water evaporates. The concentration increases because we have less volume of water per mole of HI.

So, first determine how many moles are in your original solution:

$$
\begin{aligned}
{[\mathrm{HI}] } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
0.50 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol}}{525 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{100 \mathrm{~mL}}} \\
\mathrm{x} & =0.26_{3} \mathrm{~mol} \mathrm{HI}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
(0.50 \mathrm{M})(525 \mathrm{~mL}) & =(0.82 \mathrm{M}) \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =320 \mathrm{~L}
\end{aligned}
$$

Now find out what volume of the 0.82 M solution contains this many moles of HI :

$$
\begin{aligned}
0.82 \mathrm{M} & =\frac{0.26_{3} \mathrm{~mol} \mathrm{HI}}{\mathrm{~V}} \\
\mathrm{~V} & =0.32 \mathrm{~L}=320 \mathrm{~mL}
\end{aligned}
$$

So, $525 \mathrm{~mL}-320.1 \mathrm{~mL}=2.0 \times 10^{2} \mathrm{~mL}$ of water evaporated.

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCl solution. What is the new volume and concentration of this solution?

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCl solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCI solution.

 What is the new volume and concentration of this solution?From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1, solution 2, and the total:

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCl solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1 , solution 2 , and the total:

$$
\begin{aligned}
{[\mathrm{HCl}]_{1} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
1.5 \mathrm{M} & =\frac{\mathrm{x}_{1} \mathrm{~mol}}{220 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{1} & =0.33 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
\begin{aligned}
{[\mathrm{HCl}]_{2} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.42 \mathrm{M} & =\frac{\mathrm{x}_{2} \mathrm{~mol}}{405 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{2} & =0.17 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCl solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1 , solution 2 , and the total:

$$
\begin{aligned}
{[\mathrm{HCl}]_{1} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
1.5 \mathrm{M} & =\frac{\mathrm{x}_{1} \mathrm{~mol}}{220 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{1} & =0.33 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
\begin{aligned}
{[\mathrm{HCl}]_{2} } & =\frac{\# \text { moles }}{\text { Volume (L) }} \\
0.42 \mathrm{M} & =\frac{\mathrm{x}_{2} \mathrm{~mol}}{405 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{2} & =0.17 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$$
=0.33 \mathrm{~mol}+0.17 \mathrm{~mol}
$$

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCI solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1 , solution 2 , and the total:

$$
\begin{aligned}
{[\mathrm{HCl}]_{1} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
1.5 \mathrm{M} & =\frac{\mathrm{x}_{1} \mathrm{~mol}}{220 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{1} & =0.33 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
[\mathrm{HCl}]_{2}=\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$$
=0.33 \mathrm{~mol}+0.17 \mathrm{~mol}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=0.50 \mathrm{~mol} \mathrm{HCl}
$$

And the total volume is $220 \mathrm{~mL}+405 \mathrm{~mL}=625 \mathrm{~mL}$.

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCl solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1 , solution 2 , and the total:

$$
\begin{aligned}
{[\mathrm{HCl}]_{1} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
1.5 \mathrm{M} & =\frac{\mathrm{x}_{1} \mathrm{~mol}}{220 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{1} & =0.33 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
[\mathrm{HCl}]_{2}=\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$$
=0.33 \mathrm{~mol}+0.17 \mathrm{~mol}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=0.50 \mathrm{~mol} \mathrm{HCl}
$$

And the total volume is $220 \mathrm{~mL}+405 \mathrm{~mL}=625 \mathrm{~mL}$.
So we can find the new concentration now:

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCI solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1 , solution 2 , and the total:

$$
\begin{aligned}
{[\mathrm{HCl}]_{1} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
1.5 \mathrm{M} & =\frac{\mathrm{x}_{1} \mathrm{~mol}}{220 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{1} & =0.33 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
[\mathrm{HCl}]_{2}=\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$$
=0.33 \mathrm{~mol}+0.17 \mathrm{~mol}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=0.50 \mathrm{~mol} \mathrm{HCl}
$$

And the total volume is $220 \mathrm{~mL}+405 \mathrm{~mL}=625 \mathrm{~mL}$.
So we can find the new concentration now:

$$
[\mathrm{HCl}]=\frac{0.50 \mathrm{~mol} \mathrm{HCl}}{62_{5} \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}}=8.0 \times 10^{-7} \mathrm{M}
$$

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCl solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1 , solution 2 , and the total:

$$
\begin{aligned}
{[\mathrm{HCl}]_{1} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
1.5 \mathrm{M} & =\frac{\mathrm{x}_{1} \mathrm{~mol}}{220 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{1} & =0.33 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
[\mathrm{HCl}]_{2}=\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$$
=0.33 \mathrm{~mol}+0.17 \mathrm{~mol}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=0.50 \mathrm{~mol} \mathrm{HCl}
$$

And the total volume is $220 \mathrm{~mL}+405 \mathrm{~mL}=625 \mathrm{~mL}$.
So we can find the new concentration now:

$$
[\mathrm{HCl}]=\frac{0.50 \mathrm{~mol} \mathrm{HCl}}{62_{5} \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}}=0.80 \mathrm{M}
$$

I mix 220 mL of 1.5 M HCl solution with 405 mL of 0.42 M HCl solution. What is the new volume and concentration of this solution?

From our definition of concentration, we know that we need to find the total number of moles and the total volume of the new solution.

We can start by finding the number of moles in solution 1 , solution 2 , and the total:

$$
\begin{aligned}
{[\mathrm{HCl}]_{1} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
1.5 \mathrm{M} & =\frac{\mathrm{x}_{1} \mathrm{~mol}}{220 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x}_{1} & =0.33 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
\begin{aligned}
{[\mathrm{HCl}]_{2} } & =\frac{\# \text { moles }}{\text { Volume }(\mathrm{L})} \\
0.42 \mathrm{M} & =\frac{\mathrm{x}_{2} \mathrm{~mol}}{405 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{100 \mathrm{~mL}}} \\
\mathrm{x}_{2} & =0.17 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
\mathrm{n}_{\mathrm{HCl}}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$$
=0.33 \mathrm{~mol}+0.17 \mathrm{~mol}
$$

And the total volume is $220 \mathrm{~mL}+405 \mathrm{~mL}=625 \mathrm{~mL}$.
So we can find the new concentration now:

$$
[\mathrm{HCl}]=\frac{0.50 \mathrm{~mol} \mathrm{HCl}}{62_{5} \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}}=0.80 \mathrm{M}
$$

Q: Does that make sense?
A: Yes! We diluting our HCl by mixing a greater amount of low concentration HCl into a higher concentration.

