NUCLEAR CHEMISTRY KINETICS: RADIOACTIVEDECAYRATES

PRACTICE PROBLEM 1

${ }^{60} \mathrm{Co}$ decays with a half-life of 5.27 years to produce ${ }^{60} \mathrm{Ni}$. Calculate the fraction of original sample of ${ }^{60} \mathrm{Co}$ that will remain after 15 years has passed.

- answer -

PRACTICE PROBLEM 1

${ }^{60} \mathrm{Co}$ decays with a half-life of 5.27 years to produce ${ }^{60} \mathrm{Ni}$. Calculate the fraction of original sample of ${ }^{60} \mathrm{Co}$ that will remain after 15 years has passed.

- answer -

Because radioactive decay obeys first-order kinetics, we can apply the integrated rate law to find the fraction:

$$
\begin{aligned}
\frac{N_{t}}{N_{0}} & =0.5^{\frac{t}{t_{1 / 2}}} \\
& =0.5^{\frac{15 \mathrm{yr}}{5.27 \mathrm{yr}}} \\
\frac{N_{t}}{N_{0}} & =0.139
\end{aligned}
$$

PRACTICE PROBLEM 2

${ }^{239} \mathrm{Pu}$ decays with a half-life of $t_{1 / 2}=2.41 \times 10^{4}$ years. Calculate the time it would take for a sample of ${ }^{239} \mathrm{Pu}$ to decay to 2.5% of its original population.

- answer -

PRACTICE PROBLEM 2

${ }^{239} \mathrm{Pu}$ decays with a half-life of $t_{1 / 2}=2.41 \times 10^{4}$ years. Calculate the time it would take for a sample of ${ }^{239} \mathrm{Pu}$ to decay to 2.5% of its original population.

- anscer -

Because radioactive decay obeys first-order kinetics, we can apply the integrated rate law to find the time:

$$
\begin{aligned}
t & =-\frac{t_{1 / 2}}{\ln 2} \ln \frac{N_{t}}{N_{0}} \\
& =-\frac{2.41 \times 10^{4} \mathrm{yr}}{\ln 2} \ln \frac{2.5}{100} \\
t & =1.28 \times 10^{5} \mathrm{yr}
\end{aligned}
$$

PRACTICE PROBLEM 3

A lump of charcoal (A) has a measured ${ }^{14} \mathrm{C}$ decay rate of 50 counts per hour. A recently made piece of coal (B) of the same mass has a decay rate of 170 counts per hour. If the half life of carbon-14 is 5730 years, how old is charcoal A?

PRACTICE PROBLEM 3

A lump of charcoal (A) has a measured ${ }^{14} \mathrm{C}$ decay rate of 50 counts per hour. A recently made piece of coal (B) of the same mass has a decay rate of 170 counts per hour. If the half life of carbon-14 is 5730 years, how old is charcoal A?

- answer -

Because radioactive decay obeys first-order kinetics, we know the rate law is: \quad Rate $=k N$.

In order to determine the age of sample A, we need to use the integrated rate law:

$$
t=-\frac{t_{1 / 2}}{\ln 2} \ln \frac{N_{t}}{N_{0}}
$$

However, this requires us to determine the ratio $\frac{N_{t}}{N_{0}}$, which we can do by comparing the two rates.

$$
\begin{array}{rlrl}
\frac{\text { Rate }_{\mathrm{A}}}{\text { Rate }_{\mathrm{B}}} & =\frac{k N_{\mathrm{A}}}{k N_{\mathrm{B}}} & t & =-\frac{t_{1 / 2}}{\ln 2} \ln \frac{N_{t}}{N_{0}} \\
\frac{50 \text { counts } / \mathrm{hr}}{170 \text { counts } / \mathrm{hr}} & =\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}} & & =-\frac{5730 \mathrm{yr}}{\ln 2} \ln \left(0.29_{4}\right) \\
\frac{N_{\mathrm{A}}}{N_{\mathrm{B}}} & =0.29_{4} & t & =1.01 \times 10^{4} \mathrm{yr}
\end{array}
$$

