SECTIONS D01 \& D07 Week 6

DR. MIOY T. HUYNH YALE UNIVERSITY
CHEMISTRY 161
FALL 2018

www.mioy.org/chem161

Volume vs. Moles (V vs. n) $V \propto n($ constant $T, P)$ $\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$	Pressure vs. Moles (P vs. n) $P \propto n$ (constant T, V) $\frac{P_{1}}{n_{1}}=\frac{P_{2}}{n_{2}}$	Pressure vs. Volume (P vs. V) $\begin{gathered} P \propto \frac{1}{V}(\text { constant } n, T) \\ P_{1} V_{1}=P_{2} V_{2} \end{gathered}$
Volume vs. Temp (V vs. T) $V \propto T$ (constant $n, P)$ $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	Pressure vs. Temp (P vs. T) $P \propto T$ (constant $n, V)$ $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$	$\begin{gathered} \text { P vs. V. vs. T } \\ P V \propto T(\text { constant } n) \\ \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \end{gathered}$

THE IDEAL GAS LAW

Gases behave ideally at:

- High temperatures
- Low pressures
- Large volume container (relative to gas particle volume)

UNIVERSAL GAS CONSTANT (R):

From the pairwise gas relationships, we can write:

$$
\frac{P V}{n T}=R=\begin{gathered}
P V \propto n T \\
- \text { and }- \\
0.08206
\end{gathered} \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
P V=n R T
$$

Reference Points for Gases

- Standard Temperature and Pressure (STP): $P=1$ atm and $T=273 \mathrm{~K}\left(0.0^{\circ} \mathrm{C}\right)$

Molar Volume:

- Volume occupied by one mole of an ideal gas at STP
- $\mathrm{V}=22.4 \mathrm{~L}$ (calculated from ideal gas law)
- $\mathrm{V}=(1 \mathrm{~atm}) /(1 \mathrm{~mol})(\mathrm{R})(273 \mathrm{~K})$

THE IDEAL GAS LAW

Gases behave ideally at:

- High temperatures
- Low pressures
- Large volume container (relative to gas particle volume)

UNIVERSAL GAS CONSTANT (R):

From the pairwise gas relationships, we can write:

$$
\frac{P V}{n T}=R=\begin{gathered}
P V \propto n T \\
- \text { and }- \\
0.08206
\end{gathered} \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
P V=n R T
$$

Determine the size of a balloon filled with 4.00 moles of helium gas if the room is at 1.00 atm and $22^{\circ} \mathrm{C}$.

Determine the size of a balloon filled with 4.00 moles of helium gas if the room is at 1.00 atm and $22^{\circ} \mathrm{C}$.

$$
\begin{array}{lll}
\text { What we know: } & \mathrm{P}=1.00 \mathrm{~atm} & \mathrm{~V}=? \\
& \mathrm{n}=4.00 \text { moles } & \mathrm{T}=22^{\circ} \mathrm{C}=295.15 \mathrm{~K}
\end{array}
$$

Set up the ideal gas law and solve for V :

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P} \\
& =\frac{(4.00 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(295.15 \mathrm{~K})}{1.00 \mathrm{~atm}} \\
V & =96.9 \mathrm{~L}
\end{aligned}
$$

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen gas occupy at $72{ }^{\circ} \mathrm{C}$? Assume constant pressure.

First, realize that pressure (P) and number of moles (n) is constant. If so, accept that volume (V) and temperature (T) change.

What we know:

$$
\begin{array}{ll}
V_{1}=6.0 \mathrm{~L} & V_{2}=? \\
T_{1}=-25^{\circ} \mathrm{C}=248.15 \mathrm{~K} & T_{2}=72^{\circ} \mathrm{C}=345.15 \mathrm{~K}
\end{array}
$$

Set up the expression for these conditions and solve for V_{2} :

$$
\begin{aligned}
\frac{V_{1}}{T_{1}} & =\frac{V_{2}}{T_{2}} \\
V_{2} & =\frac{V_{1} T_{2}}{T_{1}} \\
& =\frac{(6.0 \mathrm{~L})(345.15 \mathrm{~K})}{248.15 \mathrm{~K}} \\
V_{2} & =8.3 \mathrm{~L}
\end{aligned}
$$

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$.
Determine the new pressure of the gas.

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$.
Determine the new pressure of the gas.
First, realize that only the number of moles (n) is constant. If so, accept that pressure (P), volume (V), and temperature (T) all change.

What we know:

$$
\begin{array}{ll}
P_{1}=2.00 \mathrm{~atm} & P_{2}=? \\
V_{1}=35.0 \mathrm{~L} & V_{2}=70.0 \mathrm{~L} \\
T_{1}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K} & T_{2}=50.0^{\circ} \mathrm{C}=323.1_{5} \mathrm{~K}
\end{array}
$$

Set up the expression for these conditions and solve for P_{2} :

$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \\
P_{2} & =\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}} \\
& =\frac{(2.00 \mathrm{~atm})(35.0 \mathrm{~L})\left(323.1_{5} \mathrm{~K}\right)}{\left(298 .{ }_{.15} \mathrm{~K}\right)(70.0 \mathrm{~L})} \\
P_{2} & =1.08 \mathrm{~L}
\end{aligned}
$$

Consider a sample of gas at 5.40 atm in a 1.00 L rigid container at $40.0^{\circ} \mathrm{C}$. You heat the gas to $80.0^{\circ} \mathrm{C}$.
What happens? Solve for the new condition.

Consider a sample of gas at 5.40 atm in a 1.00 L rigid container at $40.0^{\circ} \mathrm{C}$. You heat the gas to $80.0^{\circ} \mathrm{C}$.
What happens? Solve for the new condition.
First, realize that volume (V) and the number of moles (n) are constant. If so, accept that pressure (P) and temperature (T) change.

What we know:

$$
\begin{array}{ll}
P_{1}=5.40 \mathrm{~atm} & P_{2}=? \\
T_{1}=40.0^{\circ} \mathrm{C}=313.15 \mathrm{~K} & T_{2}=80.0^{\circ} \mathrm{C}=353.15 \mathrm{~K}
\end{array}
$$

Set up the expression for these conditions and solve for P_{2} :

$$
\begin{aligned}
\frac{P_{1}}{T_{1}} & =\frac{P_{2}}{T_{2}} \\
P_{2} & =\frac{P_{1} T_{2}}{T_{1}} \\
& =\frac{(5.40 \mathrm{~atm})\left(353.1_{5} \mathrm{~K}\right)}{313.1_{5} \mathrm{~K}} \\
P_{2} & =6.09 \mathrm{~atm}
\end{aligned}
$$

Consider a sample of gas at 5.40 atm in a 1.00 L container fitted with a moveable piston at $40.0^{\circ} \mathrm{C}$. You heat the gas to $80.0^{\circ} \mathrm{C}$.
What happens? Solve for the new condition.

Consider a sample of gas at 5.40 atm in a 1.00 L container fitted with a moveable piston at $40.0^{\circ} \mathrm{C}$. You heat the gas to $80.0^{\circ} \mathrm{C}$.
What happens? Solve for the new condition.
First, realize that pressure (P) and the number of moles (n) are constant. If so, accept that volume (V) and temperature (T) change.

What we know:

$$
\begin{array}{ll}
V_{1}=1.00 \mathrm{~L} & V_{2}=? \\
T_{1}=40.0^{\circ} \mathrm{C}=313.1_{5} \mathrm{~K} & T_{2}=80.0^{\circ} \mathrm{C}=353.1_{5} \mathrm{~K}
\end{array}
$$

Set up the expression for these conditions and solve for V_{2} :

$$
\begin{aligned}
\frac{V_{1}}{T_{1}} & =\frac{V_{2}}{T_{2}} \\
V_{2} & =\frac{V_{1} T_{2}}{T_{1}} \\
& =\frac{(1.00 \mathrm{~L})\left(353.1_{5} \mathrm{~K}\right)}{313.1_{5} \mathrm{~K}}
\end{aligned}
$$

$$
V_{2}=1.13 \mathrm{~L}
$$

PARTIAL PRESSURES

- Each gas (A, B, etc) contributes some partial pressure $\left(P_{\mathrm{A}}\right)$ to total pressure $\left(P_{\text {total }}\right)$

$$
P_{\text {total }}=P_{\mathrm{A}}+P_{\mathrm{B}}+\ldots
$$

How to calculate partial pressure of gas A in a mixture:

- Determine moles of the gas
- Determine the mole ratio
- Multiply mole ratio by total pressure

$$
\begin{aligned}
& n_{\mathrm{A}} \\
& X_{\mathrm{A}}=n_{\mathrm{A}} / n_{\text {total }} \\
& P_{\mathrm{A}}=X_{\mathrm{A}} P_{\text {total }}
\end{aligned}
$$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$.

 What is the partial pressure of each gas in the tank?What is the total pressure in the tank?

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$.

 What is the partial pressure of each gas in the tank?What is the total pressure in the tank?
Solve for the partial pressures of each gas using the ideal gas law:
For N_{2} :

$$
\begin{aligned}
P_{\mathrm{N}_{2}} & =\frac{n_{\mathrm{N}_{2}} R T}{V} \\
& =\frac{(186 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(297 \cdot{ }_{15} \mathrm{~K}\right)}{50.0 \mathrm{~L}} \\
P_{\mathrm{N}_{2}} & =90.7_{1} \mathrm{~atm}
\end{aligned}
$$

For O_{2} :

$$
\begin{aligned}
P_{\mathrm{O}_{2}} & =\frac{n_{\mathrm{O}_{2}} R T}{V} \\
& =\frac{(145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297.15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\mathrm{O}_{2}} & =70.7_{1} \mathrm{~atm}
\end{aligned}
$$

For total pressure: $P_{\text {total }}=P_{N_{2}}+P_{O_{2}}=90.7_{1} \mathrm{~atm}+70.7_{1} \mathrm{~atm}=161 \mathrm{~atm}$

A 50.0 L steel tank contains $186 \mathrm{~mol} \mathrm{~N}_{2}$ and $145 \mathrm{~mol} \mathrm{O}_{2}$ at $24^{\circ} \mathrm{C}$. What is the partial pressure of each gas in the tank?
What is the total pressure in the tank?
Alternative Solution: Solve for the partial pressures of each gas using mole fractions. The total pressure ($\mathrm{P}_{\text {total }}$) can be determined from the ideal gas law:

$$
\begin{aligned}
P_{\text {total }} & =\frac{\left(n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}\right) R T}{V} \\
& =\frac{(186 \mathrm{~mol}+145 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(297 \cdot 15 \mathrm{~K})}{50.0 \mathrm{~L}} \\
P_{\text {total }} & =161 \cdot 4 \mathrm{~atm}
\end{aligned}
$$

Find mole fractions for each gas:

$$
X_{\mathrm{N}_{2}}=\frac{n_{\mathrm{N}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{186 \mathrm{~mol}}{331 \mathrm{~mol}}=0.561_{9} \text { and } X_{\mathrm{O}_{2}}=\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{N}_{2}}+n_{\mathrm{O}_{2}}}=\frac{145 \mathrm{~mol}}{331 \mathrm{~mol}}=0.438_{1}
$$

Find partial pressures from mole fractions and $\mathrm{P}_{\text {total }}$:

$$
P_{\mathrm{N}_{2}}=X_{\mathrm{N}_{2}} P_{\text {total }}=\left(0.561_{9}\right)(161 \cdot 4 \mathrm{~atm})=90.7 \mathrm{~atm} \text { and } P_{\mathrm{O}_{2}}=X_{\mathrm{O}_{2}} P_{\text {total }}=\left(0.438_{1}\right)\left(161_{\cdot 4} \mathrm{~atm}\right)=70.7 \mathrm{~atm}
$$

Into an empty, locked (immoveable) piston with a volume of 1.15 L and temperature of 245 K , you inject:

- 589 mL of carbon monoxide gas at 325 K and 1.20 atm
- 473 mL of nitrogen gas at 298 K and 2.60 atm

What is the final pressure of the contents after injection? Assume no reaction occurs.

Into an empty, locked (immoveable) piston with a volume of 1.15 L and temperature of 245 K , you inject:

- 589 mL of carbon monoxide gas at 325 K and 1.20 atm
- 473 mL of nitrogen gas at 298 K and 2.60 atm

What is the final pressure of the contents after injection? Assume no reaction occurs.
Recognize that the final temperature of both gases will be 245 K . We can use the initial P, V, and T of each gas to find the number of moles of each:

$$
\begin{aligned}
n_{\mathrm{CO}} & =\frac{P V}{R T} \\
& =\frac{(1.20 \mathrm{~atm})\left(589 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(325 \mathrm{~K})} \\
n_{\mathrm{CO}} & =0.0265_{0} \mathrm{~mol}
\end{aligned}
$$

$$
n_{\mathrm{N}_{2}}=\frac{P V}{R T}
$$

$$
=\frac{(2.60 \mathrm{~atm})\left(473 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}
$$

$$
n_{\mathrm{N}_{2}}=0.0502_{9} \mathrm{~mol}
$$

Now use the total moles ($n_{\text {total }}$) to find the new pressure:

$$
\begin{aligned}
P_{\text {final }} & =\frac{\left(n_{\mathrm{CO}}+n_{\mathrm{N}_{2}}\right) R T}{V} \\
& =\frac{\left(0.0265_{0} \mathrm{~mol}+0.0502_{9 \mathrm{n}} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(245 \mathrm{~K})}{1.15 \mathrm{~L}} \\
P_{\text {final }} & =1.34 \mathrm{~atm}
\end{aligned}
$$

Into an empty, locked (immoveable) piston with a volume of 1.15 L and temperature of 245 K , you inject:

- 589 mL of carbon monoxide gas at 325 K and 1.20 atm
- 473 mL of nitrogen gas at 298 K and 2.60 atm

If the piston is now allowed to move, what is the new volume after injection? (Hint: Think about what the final pressure has to be.)

Into an empty, locked (immoveable) piston with a volume of 1.15 L and temperature of 245 K , you inject:

- 589 mL of carbon monoxide gas at 325 K and 1.20 atm
- 473 mL of nitrogen gas at 298 K and 2.60 atm

If the piston is now allowed to move, what is the new volume after injection? (Hint: Think about what the final pressure has to be.)

First, recognize that the piston's volume will expand to obtain a pressure $=1.00 \mathrm{~atm}$. Second, realize that temperature (T) and the number of moles (n) are constant. If so, accept that pressure (P) and volume (V) change.

What we know: $\quad P_{1}=1.34_{3} \mathrm{~atm} \quad P_{2}=1.00 \mathrm{~atm}$

$$
V_{1}=1.15 L \quad V_{2}=?
$$

$$
\begin{aligned}
P_{1} V_{1} & =P_{2} V_{2} \\
V_{2} & =\frac{P_{1} V_{1}}{P_{2}}
\end{aligned}
$$

$$
=\frac{\left(1.34_{3} \mathrm{~atm}\right)(1.15 \mathrm{~L})}{(1.00 \mathrm{~atm})}
$$

$$
V_{2}=1.54 \mathrm{~L}
$$

An experiments shows that 0.495 g sample of an unknown gas occupies 127 mL at $98^{\circ} \mathrm{C}$ and 0.992 atm.
What is the molar mass of the gas?
Using the ideal gas law, we can solve for the number of moles (n):

$$
\begin{aligned}
n & =\frac{P V}{R T} \\
& =\frac{(0.992 \mathrm{~atm})\left(127 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(371.15 \mathrm{~K})} \\
n & =0.00413_{7} \mathrm{~mol}
\end{aligned}
$$

Now we can back-calculate the molar mass (MM) using the mass of the sample:

$$
\begin{aligned}
0.495 \mathrm{~g} & =0.00413_{7} \mathrm{~mol} \times \frac{M M \mathrm{~g}}{1 \mathrm{~mol}} \\
M M & =120 \cdot \frac{\mathrm{~g}}{\mathrm{~mol}}
\end{aligned}
$$

Imagine that both stopcocks were opened so that the gases mix at 298 K .

What is the partial pressure of each gas after opening?

Imagine that both stopcocks were opened so that the gases mix at 298 K .

What is the partial pressure of each gas after opening?

Solve for the number of moles using the pressures of each gas using the ideal gas law:

$$
\begin{aligned}
n_{\mathrm{H}_{2}} & =\frac{P V}{R T} \\
& =\frac{(0.861 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
n_{\mathrm{N}_{2}} & =0.0352_{1} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
n_{\mathrm{Ar}} & =\frac{P V}{R T} \\
& =\frac{(1.15 \mathrm{~atm})(2.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
n_{\mathrm{Ar}} & =0.0940_{5} \mathrm{~mol}
\end{aligned}
$$

ROOT-MEAN-SQUARE (RMS) SPEEDS

$$
u_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M M}} \quad ; \quad \frac{u_{\mathrm{rms}, \mathrm{~A}}}{u_{\mathrm{rms}, \mathrm{~B}}}=\sqrt{\frac{M M_{\mathrm{B}}}{M M_{\mathrm{A}}}} \quad ; \quad R=8.314 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~mol} \cdot \mathrm{~K} \cdot \mathrm{~s}^{2}}
$$

At a given temperature, gases with larger molar masses (MM) move more slowly.

EFFUSION RATE ($r_{\text {eff }}$)

$$
\frac{r_{\mathrm{eff}, \mathrm{~A}}}{r_{\mathrm{eff}, \mathrm{~B}}}=\frac{u_{\mathrm{rms}, \mathrm{~A}}}{u_{\mathrm{rms}, \mathrm{~B}}}=\sqrt{\frac{M M_{\mathrm{B}}}{M M_{\mathrm{A}}}}
$$

At a given temperature, gases with smaller MMs have a higher chance of escaping.

An unknown gas effuses at a rate of $0.10 \mathrm{~m} / \mathrm{s}$ and the SO_{3} effuses at $0.052 \mathrm{~m} / \mathrm{s}$ under identical conditions.
What is the molar mass of the unknown gas?

An unknown gas effuses at a rate of $0.10 \mathrm{~m} / \mathrm{s}$ and the SO_{3} effuses at $0.052 \mathrm{~m} / \mathrm{s}$ under identical conditions.
What is the molar mass of the unknown gas?
Use Graham's Law to find molar mass of gas X :

$$
\begin{gathered}
\frac{r_{\mathrm{eff}, \mathrm{SO}}^{3}}{} \\
r_{\mathrm{eff}, \mathrm{X}}
\end{gathered}=\sqrt{\frac{M M_{\mathrm{SO}_{3}}}{M M_{\mathrm{X}}}}
$$

