## ELECTROCHEMISTRY ELECTROLYTIC CELLS AND ELECTROLYSIS

## PRACTICE PROBLEM 1

A current of 10.23 A is passed through a solution of silver nitrate for 1800 . seconds. What mass of silver can be plated onto the cathode electrode?

- answer -


## PRACTICE PROBLEM 1

A current of 10.23 A is passed through a solution of silver nitrate for 1800. seconds. What mass of silver can be plated onto the cathode electrode?

- answer -

The reaction we are interested in is the cathodic reaction: $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$.

We can determine the amount of Ag using the stoichiometry of the equation above where $n=1, F=96500 \frac{\mathrm{C}}{\mathrm{mole}}$, and $1 \mathrm{~A}=1 \frac{\mathrm{C}}{\mathrm{s}}$.

$$
m_{\mathrm{Ag}}=1800 . \mathrm{s} \times \frac{10.23 \mathrm{C}}{1 \mathrm{~s}} \times \frac{1 \mathrm{~mol} \mathrm{e}^{-}}{96500 \mathrm{C}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{e}^{-}} \times \frac{107.9 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}=20.59 \mathrm{~g} \mathrm{Ag}
$$

PRACTICE PROBLEM 2

$$
\begin{gathered}
\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})
\end{gathered} \quad E^{\mathrm{o}}=0 \mathrm{~V} .229 \mathrm{~V},
$$

An electrolytic cell is constructed from the reactions above. How many moles of $\mathrm{O}_{2}(\mathrm{~g})$, at $25^{\circ} \mathrm{C}$ and 1.00 atm, are produced if the electrolytic cell is operated at a current of 0.025 A for 1.0 hour?

PRACTICE PROBLEM 2

$$
\begin{gathered}
\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})
\end{gathered} \quad E^{\mathrm{o}}=0 \mathrm{~V} .229 \mathrm{~V} .
$$

An electrolytic cell is constructed from the reactions above. How many moles of $\mathrm{O}_{2}(\mathrm{~g})$, at $25^{\circ} \mathrm{C}$ and 1.00 atm , are produced if the electrolytic cell is operated at a current of 0.025 A for 1.0 hour?

- answer -

First, write out the balanced net ionic equation for the nonspontaneous electrolytic cell reaction where $E_{\text {cell }}^{0}<0 \mathrm{~V}$ and $\Delta G^{o}>0$.

| Cathode (Reduction): | $2 \times\left[2 \mathrm{H}^{+}(\mathrm{aq})+\right.$ | $2 \mathrm{e}^{-}$ | $\rightarrow$ | $\mathrm{H}_{2}(\mathrm{~g})$ | ] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anode (Oxidation): |  | $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | $\rightarrow$ | $\mathrm{O}_{2}(\mathrm{~g})$ | + | $4 \mathrm{H}^{+}(\mathrm{aq})$ | + | $4 \mathrm{e}^{-}$ |
| Cell |  | $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ | $\rightarrow$ | $2 \mathrm{H}_{2}$ (g) |  | $\mathrm{O}_{2}(\mathrm{~g})$ |  |  |

We can determine the amount of $\mathrm{O}_{2}$ using the stoichiometry of the equation above where $n=4, F=96500 \frac{\mathrm{C}}{\operatorname{mol} e^{-}}$, and $1 \mathrm{~A}=1 \frac{\mathrm{C}}{\mathrm{s}}$.

$$
n_{\mathrm{O}_{2}}=1.0 \mathrm{hr} \times \frac{3600 \mathrm{~s}}{1 \mathrm{hr}} \times \frac{0.025 \mathrm{C}}{1 \mathrm{~s}} \times \frac{1 \mathrm{~mol} \mathrm{e}^{-}}{96500 \mathrm{C}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{e}^{-}}=2.3 \times 10^{-4} \mathrm{~mol} \mathrm{O}_{2}
$$

