ELECTROLYTIC CELLS AND ELECTROLYSIS A SARAN

CHEMISTRY 165 // SPRING 2020

A current of 10.23 A is passed through a solution of silver nitrate for 1800. seconds. What mass of silver can be plated onto the cathode electrode?

- answer -

A current of 10.23 A is passed through a solution of silver nitrate for 1800. seconds. What mass of silver can be plated onto the cathode electrode?

- answer -

The reaction we are interested in is the cathodic reaction: Ag⁺ (aq) + $e^- \rightarrow$ Ag (s).

$$m_{\rm Ag} = 1800. \ {\rm s} \times \frac{10.23 \ {\rm C}}{1 \ {\rm s}} \times \frac{1 \ {\rm mo}}{9650}$$

We can determine the amount of Ag using the stoichiometry of the equation above where n = 1, $F = 96500 \frac{C}{\text{mol } e^{-}}$, and $1 \text{ A} = 1 \frac{C}{s}$.

 $\frac{1 \text{ mol Ag}}{500 \text{ C}} \times \frac{1 \text{ mol Ag}}{1 \text{ mol e}^-} \times \frac{107.9 \text{ g Ag}}{1 \text{ mol Ag}} = 20.59 \text{ g Ag}$

- $O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(l)$ $E^o = +1.229 V$

electrolytic cell is operated at a current of 0.025 A for 1.0 hour? - answer -

 $2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)$ $E^{0} = 0 V$

An electrolytic cell is constructed from the reactions above. How many moles of O_2 (g), at 25 °C and 1.00 atm, are produced if the

An electrolytic cell is constructed from the reactions above. How many moles of O_2 (g), at 25 °C and 1.00 atm, are produced if the electrolytic cell is operated at a current of 0.025 A for 1.0 hour? - answer -

Cathode (Reduction):	2 × [2 H+ (aq)	+	2 e⁻	\rightarrow	H ₂ (g)]		
Anode (Oxidation):				2 H ₂ O (I)	\rightarrow	O ₂ (g)	+	4 H ⁺ (aq) +	4 e⁻
Cell				2 H ₂ O (I)	\rightarrow	2 H ₂ (g)	+	O ₂ (g)	

$$n_{0_2} = 1.0 \text{ hr} \times \frac{3600 \text{ s}}{1 \text{ hr}} \times \frac{0.025 \text{ C}}{1 \text{ s}} \times \frac{1 \text{ mol } \text{e}^-}{96500 \text{ C}} \times \frac{1 \text{ mol } 0_2}{4 \text{ mol } \text{e}^-} = 2.3 \times 10^{-4} \text{ mol } 0_2$$

 $O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(l)$ $E^o = +1.229 V$

 $2 H^+ (aq) + 2 e^- \rightarrow H_2 (g)$ $E^0 = 0 V$

First, write out the balanced net ionic equation for the nonspontaneous electrolytic cell reaction where $E_{cell}^{o} < 0 V$ and $\Delta G^{o} > 0$.

We can determine the amount of O₂ using the stoichiometry of the equation above where n = 4, $F = 96500 \frac{C}{mol e^{-}}$, and $1 \text{ A} = 1 \frac{C}{s}$.

