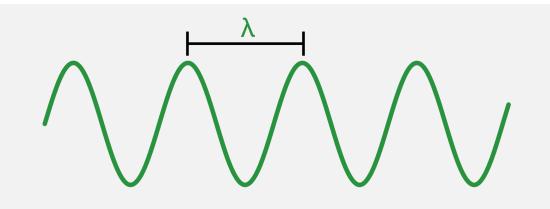

Electrons as Waves

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

LIGHT


PHOTON: a quantized packet of light with a specific wavelength WAVE-PARTICLE DUALITY: light behaves as both a wave *and* a particle

ELECTRONS

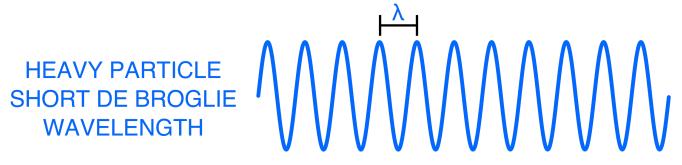
Q: What is an electron?

Is it a wave that carries energy?

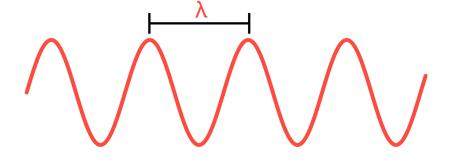
ELECTRON AS A WAVE

Is it a negatively charged particle? ELECTRON AS A PARTICLE

A: It behaves as both a wave and a particle.


ELECTRONS BEHAVE VERY MUCH LIKE LIGHT!

de Broglie Wavelength (λ)


Understand the relationship between the de Broglie wavelength (λ) and the mass (m) of a particle.

$E = mc^2$	λ =	h
	κ –	mu

Property		Value	Units
Energy	Е		J
de Broglie Wavelength	λ		nm
Particle mass	m		kg
Particle speed	и		m/s
Planck's constant	h	6.626 × 10 ⁻³⁴	J·s

LIGHT PARTICLE / \
LONG DE BROGLIE WAVELENGTH

PARTICLE	MASS (m)	SPEED (u)	de Broglie Wavelength (λ)
Electron	9.11 × 10 ⁻²⁸ g	4.05 × 10 ⁶ m/s	
Person	80.0 kg	15 mi/hr	
1 613011	00.0 kg	13 1111/111	
Earth	6.0 × 10 ²⁷ g	3.0 × 10 ⁴ m/s	

PARTICLE	MASS (m)	SPEED (u)	de Broglie Wavelength (λ)
Electron	9.11 × 10 ^{−28} g	4.05 × 10 ⁶ m/s	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(9.11 \times 10^{-31} \text{ kg}) \left(4.05 \times 10^{6} \frac{\text{m}}{\text{s}}\right)}$ $= 1.08 \times 10^{-10} \text{ m}$
Person	80.0 kg	15 mi/hr	
Earth	6.0 × 10 ²⁷ g	3.0 × 10 ⁴ m/s	

PARTICLE	MASS (m)	SPEED (u)	de Broglie Wavelength (λ)
Electron	9.11 × 10 ^{−28} g	4.05 × 10 ⁶ m/s	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(9.11 \times 10^{-31} \text{ kg}) \left(4.05 \times 10^{6} \frac{\text{m}}{\text{s}}\right)}$ $= 1.08 \times 10^{-10} \text{ m}$
Person	80.0 kg	15 mi/hr	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(80.0 \text{ kg}) \left(6.7 \frac{\text{m}}{\text{s}}\right)}$ $= 1.24 \times 10^{-36} \text{ m}$
Earth	6.0 × 10 ²⁷ g	3.0 × 10 ⁴ m/s	

PARTICLE	MASS (m)	SPEED (u)	de Broglie Wavelength (λ)
Electron	9.11 × 10 ^{−28} g	4.05 × 10 ⁶ m/s	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(9.11 \times 10^{-31} \text{ kg}) \left(4.05 \times 10^{6} \frac{\text{m}}{\text{s}}\right)}$ $= 1.08 \times 10^{-10} \text{ m}$
Person	80.0 kg	15 mi/hr	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(80.0 \text{ kg}) \left(6.7 \frac{\text{m}}{\text{s}}\right)}$ $= 1.24 \times 10^{-36} \text{ m}$
Earth	6.0 × 10 ²⁷ g	3.0 × 10 ⁴ m/s	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(6.0 \times 10^{24} \text{ kg}) \left(3.0 \times 10^4 \frac{\text{m}}{\text{s}}\right)}$ $= 3.68 \times 10^{-63} \text{ m}$

PARTICLE	MASS (m)	SPEED (u)	de Broglie Wavelength (λ)
Electron	9.11 × 10 ^{−28} g	4.05 × 10 ⁶ m/s	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(9.11 \times 10^{-31} \text{ kg}) \left(4.05 \times 10^{6} \frac{\text{m}}{\text{s}}\right)}$ $= 1.08 \times 10^{-10} \text{ m}$
Person	80.0 kg	15 mi/hr	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(80.0 \text{ kg}) \left(6.7 \frac{\text{m}}{\text{s}}\right)}$ $= 1.24 \times 10^{-36} \text{ m}$
Earth	6.0 × 10 ²⁷ g	3.0 × 10 ⁴ m/s	$\lambda = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(6.0 \times 10^{24} \text{ kg}) \left(3.0 \times 10^4 \frac{\text{m}}{\text{s}}\right)}$ $= 3.68 \times 10^{-63} \text{ m}$