THE AND SPONTANEITY

CHEMISTRY 165 // SPRING 2020

Which of the following combinations of entropy changes is not possible?

- answer -

	$\Delta S_{\rm sys}$	$\Delta S_{\rm surr}$
(i)	<0	>0
(ii)	<0	<0
(iii)	>0	<0

$\Delta S_{ m univ}$	Possible?	
>0		
>0		
>0		

Which of the following combinations of entropy changes is not possible?

- answer -

For all three choices, the $\Delta S_{univ} > 0$, which means that all are spontaneous processes—this is the second law of thermodynamics. Now, we can work through each combination to see if the following is true:

 $\Delta S_{\rm sys} + \Delta S_{\rm sys} +$

	$\Delta S_{\rm sys}$	$\Delta S_{\rm surr}$	$\Delta S_{ m univ}$	Possible?
(i)	<0	>0	>0	Yes, if $ \Delta S_{surr} > \Delta S_{sys} $.
(ii)	<0	<0	>0	No.
(iii)	>0	<0	>0	Yes, if $ \Delta S_{\rm surr} < \Delta S_{\rm sys} $.

$$\Delta S_{\rm surr} = \Delta S_{\rm univ}$$
$$\Delta S_{\rm surr} > 0$$

2 NO (g) +

(a) Predict the sign of ΔS° .

(b) Calculate the

ΔS° for the reaction using the following standard molar entropies (S°).				
		NO (g)	O ₂ (g)	NO ₂ (g)
	$S^{\circ}\left(\frac{J}{\mathrm{mol}\cdot\mathrm{K}}\right)$	210.7	205.0	240.0

- answer -

$$O_2(g) \rightarrow 2 NO_2(g)$$

2 NO (g) +

(a) Predict the sign of ΔS° .

(b) Calculate the ΔS° for the reaction using the following standard molar entropies (S°).

		NO (g)	O ₂ (g)	NO ₂ (g)
	$S^{\circ}\left(\frac{J}{\mathrm{mol}\cdot\mathrm{K}}\right)$	210.7	205.0	240.0
- answer -				

entropy (disorder) of the system decreases ($\Delta S < 0$).

$$O_2(g) \rightarrow 2 NO_2(g)$$

(a) First, recognize that entropy is a measure of the disorder of a system, so the greater the disorder, the greater the entropy. Because we are going from 3 moles of gaseous species in the reactants to only 2 moles of gaseous species in the products, the

2 NO (g) +

(a) Predict the sign of ΔS° .

(b) Calculate the ΔS° for the reaction using the following standard molar entropies (S°).

		NO (g)	O ₂ (g)	NO ₂ (g)
	$S^{\circ}\left(\frac{J}{\mathrm{mol}\cdot\mathrm{K}}\right)$	210.7	205.0	240.0
- answer -				

(a) First, recognize that entropy is a measure of the disorder of a system, so the greater the disorder, the greater the entropy. Because we are going from 3 moles of gaseous species in the reactants to only 2 moles of gaseous species in the products, the entropy (disorder) of the system decreases ($\Delta S < 0$).

(b)
$$\Delta S_{\text{rxn}}^{o} = \sum n_{\text{prod}} S_{\text{prod}}^{o} - \sum n_{\text{react}} S_{\text{react}}^{o}$$
$$= (2 \text{ mol NO}_2) \times \left(240.0 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right) - \left[(2 \text{ mol NO}_2) \times \left(210.5 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right) + (1 \text{ mol O}_2) \times \left(205.0 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right)\right]$$
$$\Delta S_{\text{rxn}}^{o} = -146.0 \frac{\text{J}}{\text{K}}$$

$$O_2(g) \rightarrow 2 NO_2(g)$$

The entropy change for a block of ice melting is 22.1 J/K and the surroundings transfer 6.00 kJ of heat to the system. Is this process spontaneous at 10.0 °C?

 $H_2O(s) \rightleftharpoons H_2O(l)$

- answer -

The entropy change for a block of ice melting is 22.1 J/K and the surroundings transfer 6.00 kJ of heat to the system. Is this process spontaneous at 10.0 °C?

- answer -

First, realize that for a process to be spontaneous, the entropy change of the universe must be positive: $\Delta S_{\rm sys} + \Delta S_{\rm sys}$

We are already given the entropy change of the system: ΔS_{sys} Now we can find the entropy change of the surroundings, which can be related to the heat transfer. $\Delta S_{\rm surr}$

 ΔS_{surr}

And finally we can find the entropy change of the universe to determine the process is spontaneous.

 $\Delta S_{\rm univ} = \Delta S_{\rm sys} + \Delta S_{\rm surr} =$

 $H_2O(s) \rightleftharpoons H_2O(l)$

$$S_{\text{surr}} = \Delta S_{\text{univ}} > 0$$

= $22.1 \frac{\text{J}}{\text{K}}$.

$$= \frac{q_{\text{surr}}}{T}$$

= $\frac{-6.00 \text{ kJ} \times \frac{1000 \text{ J}}{1 \text{ kJ}}}{(10.0 + 273.15) \text{K}}$
= $-21.1_9 \frac{\text{J}}{\text{K}}$

$$22.1\frac{J}{K} + \left(-21.1_9\frac{J}{K}\right) = 0.9\frac{J}{K} > 0$$

