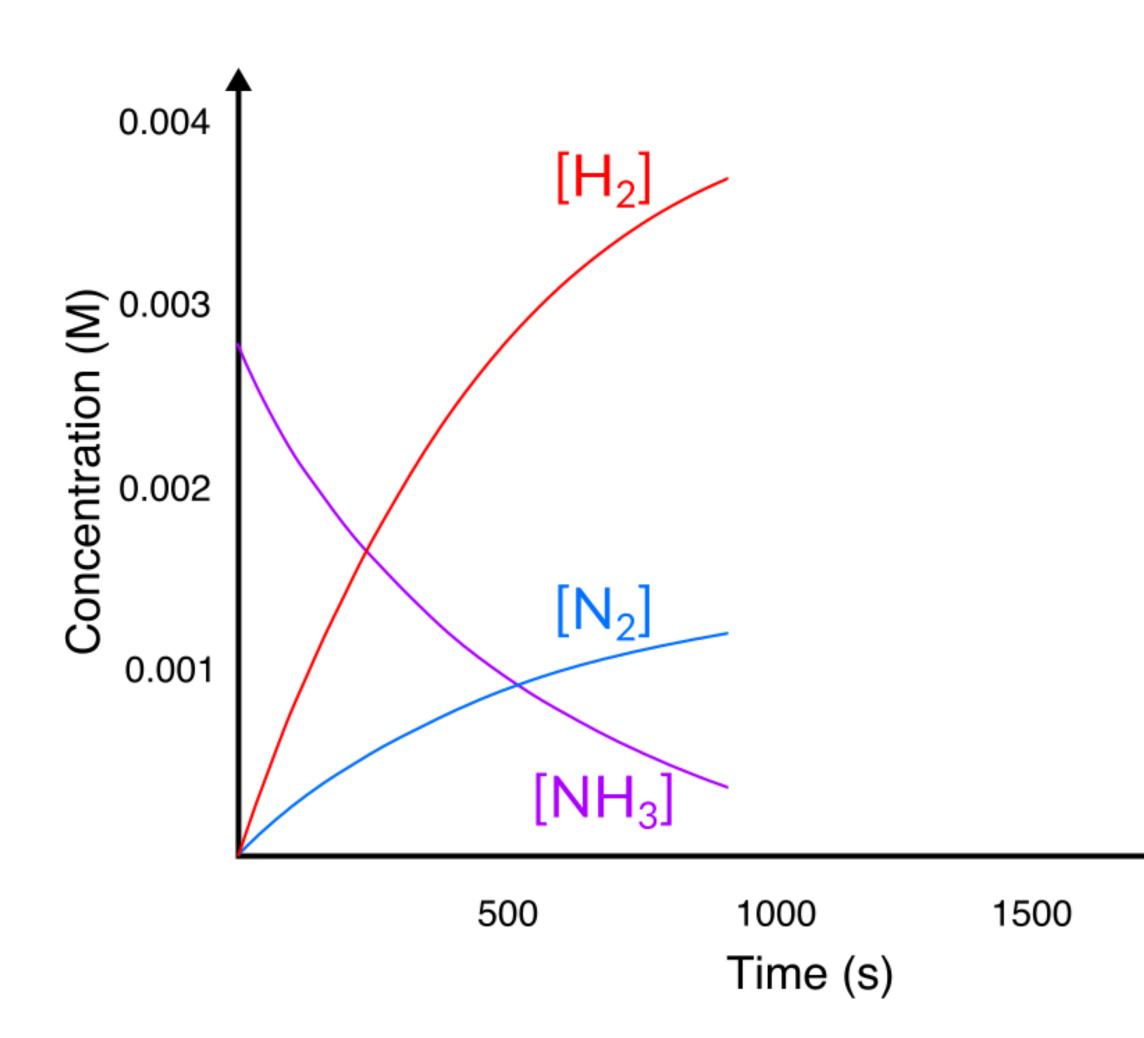
EQUIDERBRIGHTIONS AND K VALUES

CHEMISTRY 165 // SPRING 2020

Chemical equilibrium

Consider the decomposition of ammonia gas into nitrogen gas and hydrogen gas. $2 \text{ NH}_3(g) \rightarrow \text{N}_2(g) + 3 \text{ H}_2(g)$



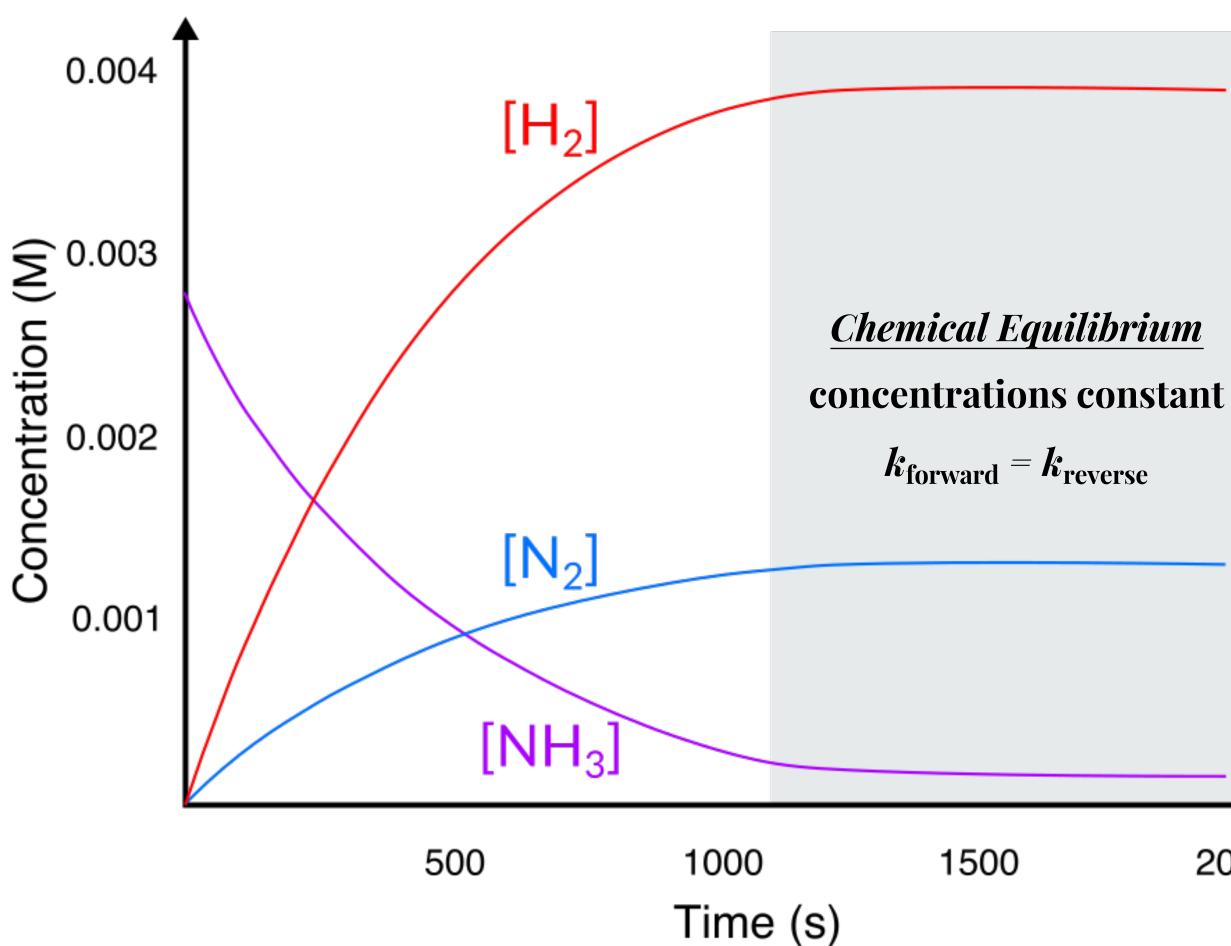
Notice the arrow is unidirectional (\rightarrow) , which indicates the reaction proceeds in the direction to the right. This coincides with the plot of the concentrations over time since $[H_2]$ and $[N_2]$ increase and [NH₃] decreases over time.

But what if we waited longer?



Chemical equilibrium

Consider the decomposition of ammonia gas into nitrogen gas and hydrogen gas. $2 \text{ NH}_3(g) \rightarrow \text{N}_2(g) + 3 \text{ H}_2(g)$



2000

But what if we waited longer?

The concentrations would plateau rather than go to zero for the reactants. At this point, we reach chemical equilibrium. This is a dynamical process where NH₃ continues to decompose, but N₂ and H₂ will also re-combine to form NH₃ again. And the at which these forward and reverse rates processes occur are equal to each other.

 $k_{\rm forward} = k_{\rm reverse}$

better represent the dynamic nature of To chemical reactions that reach equilibrium we use the \Rightarrow arrow to indicate both processes occurring.

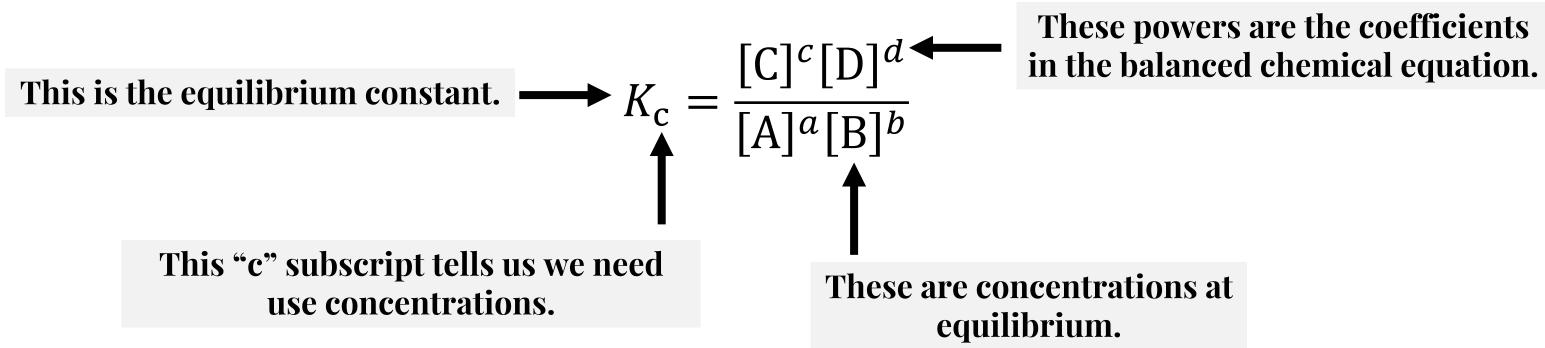
$$2 \operatorname{NH}_{3}(g) \rightleftharpoons \operatorname{N}_{2}(g) + 3 \operatorname{H}_{2}(g)$$

Quantifying equilibrium: K_c values

As it turns out, regardless of what initial conditions (concentrations) we start with we always end up at equilibrium. This behavior means suggests that we can express equilibrium quantitatively through an equilibrium constant (K).

Consider the general balanced chemical equation:

The equilibrium constant for this reaction is expressed using the Law of Mass Action and is a ratio between the amount of products to reactants:



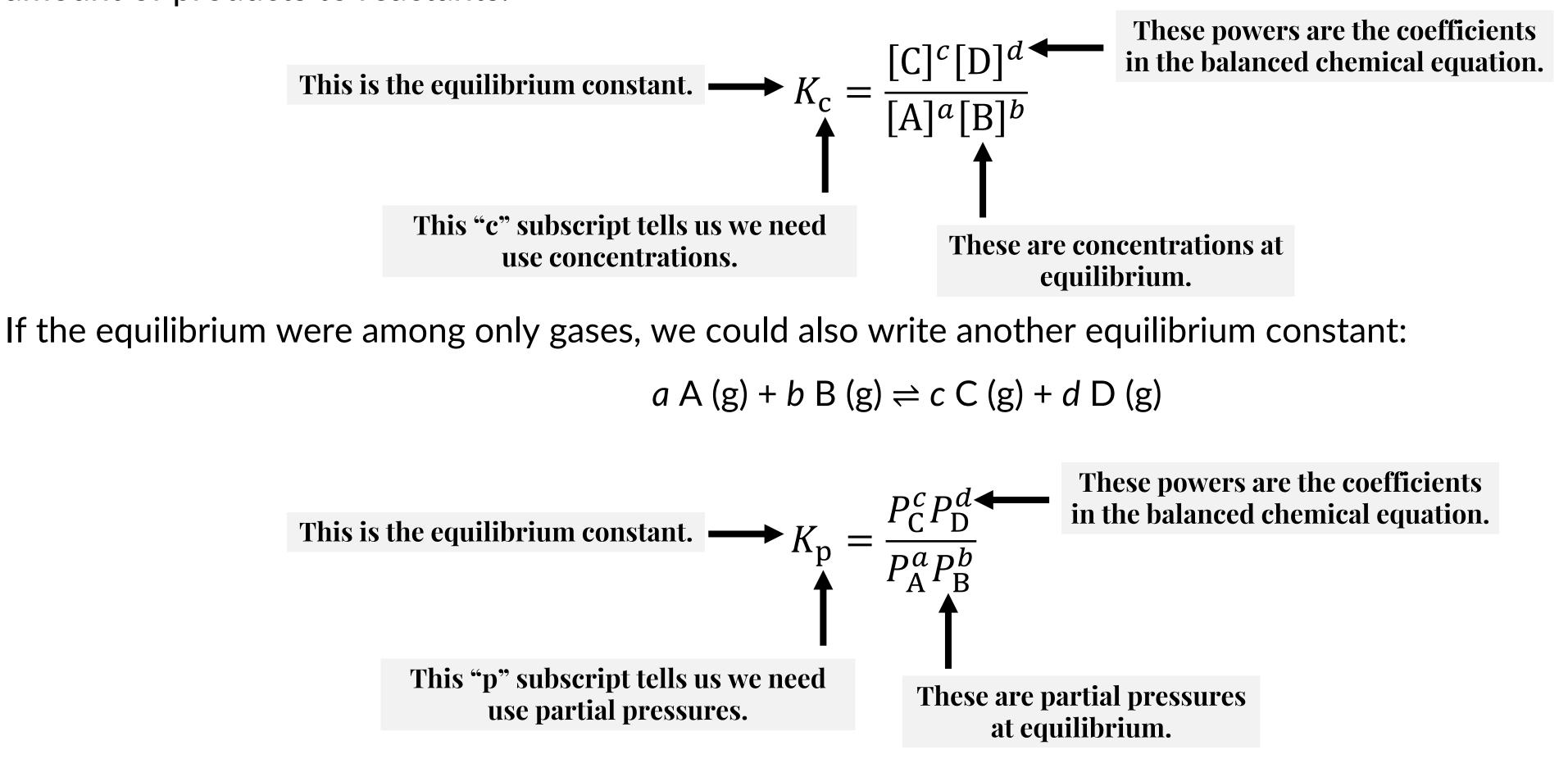
```
a A + b B \rightleftharpoons c C + d D
```

Quantifying equilibrium: K_p values

Consider the general balanced chemical equation:

 $a A + b B \rightleftharpoons c C + d D$

The equilibrium constant for this reaction is expressed using the Law of Mass Action and is a ratio between the amount of products to reactants:



This "p" subscript tells us we need

Features of K_c and K_p

Despite the forms of the equilibrium constants, they are unitless/dimensionless quantities.

Additionally, for gaseous equilibria we can convert between K_c and K_p via the ideal gas law to re-express partial pressures in terms of concentrations. Here I show it for a gas compound C. $P_{\rm C}$

Now, we can substitute our partial pressures in the K_p expression for concentrations and derive the relationship between K_c and K_p :

$$K_{\rm p} = \frac{P_{\rm C}^{c} P_{\rm D}^{d}}{P_{\rm A}^{a} P_{\rm B}^{b}} = \frac{([{\rm C}]RT)^{c} ([{\rm D}]RT)^{c}}{([{\rm A}]RT)^{a} ([{\rm B}]RT)^{c}}$$

$$V = n_{\rm C} RT$$
$$P_{\rm C} = \frac{n_{\rm C}}{V} RT$$
$$P_{\rm C} = [{\rm C}] RT$$

 $\frac{T^{d}}{T^{b}} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \cdot \frac{(RT)^{c+d}}{(RT)^{a+b}} = K_{c} \cdot (RT)^{\Delta n}$ This is $K_{c}!$ Remember these powers are just the coefficients in the balanced chemical equation, so: $\Delta n = (\mathbf{c} + \mathbf{d}) - (\mathbf{a} + \mathbf{b})$ This Δn is just the change in the number of moles of products and reactants!

Manipulating K values

Because the K values are written based on the balanced chemical equation, K values can be different depending on how you balance the equation.

For instance, consider the three balanced chemical equations and their K_c values at 425 K.

$$I_{2}(g) + Br_{2}(g) \rightleftharpoons 2 IBr(g) \qquad K_{c} = \frac{[IBr]^{2}}{[I_{2}][Br_{2}]} = 120.$$

$$K_{c} = \frac{[IBr]}{[I_{2}]^{1/2}[Br_{2}]^{1/2}} = 11.0$$

$$K_{c}' = \frac{[IBr]}{[I_{2}]^{1/2}[Br_{2}]^{1/2}} = 11.0$$

$$K_{c}'' = \frac{[IBr]^{4}}{[I_{2}]^{2}[Br_{2}]^{2}} = 1.44 \times 10^{4}$$

Manipulating K values

Because the K values are written based on the balanced chemical equation, K values can be different depending on how you balance the equation.

For instance, consider the three balanced chemical equations and their K_c values at 425 K. Luckily, the relationship between the different K_c values is just related to the quantity (n) by which we multiple the first balanced equation. The other K_c values are simply mathematical manipulations of K_c^n .

$$K_{c} = \frac{[IBr]^{2}}{[I_{2}][Br_{2}]} = 120.$$

$$\times \frac{1/2}{\frac{1}{2} [g] + \frac{1}{2} [g] \Rightarrow 1Br(g)$$

$$K_{c} = \frac{[IBr]}{[I_{2}]^{1/2}[Br_{2}]^{1/2}} = 11.0$$

$$K_{c}' = \frac{[IBr]}{[I_{2}]^{1/2}[Br_{2}]^{1/2}} = 11.0$$

$$K_{c}'' = (K_{c})^{1/2}$$

$$K_{c}'' = (K_{c})^{2}$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. $2 H_2 O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. $2 H_2 O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

The first step should always be to write the balanced chemical equation, but that's done for us.

respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K.

- answer -

The first step should always be to write the balanced chemical equation, but that's done for us. The second step is to write the equilibrium expression based on the Law of Mass Action for the balanced chemical equation.

$$K_{\rm p} = \frac{P_{\rm H_2}^2 P_{\rm O_2}}{P_{\rm H_2}^2}$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm,

 $2 H_2O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K.

- answer -

The first step should always be to write the balanced chemical equation, but that's done for us. The second step is to write the equilibrium expression based on the Law of Mass Action for the balanced chemical equation. Next, we can calculate the equilibrium constant by inserting the equilibrium partial pressures given to us.

$$K_{\rm p} = \frac{P_{\rm H_2}^2 P_{\rm O_2}}{P_{\rm H_2}^2}$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm,

 $2 H_2O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K.

- answer -

The first step should always be to write the balanced chemical equation, but that's done for us. The second step is to write the equilibrium expression based on the Law of Mass Action for the balanced chemical equation. Next, we can calculate the equilibrium constant by inserting the equilibrium partial pressures given to us.

$$K_{\rm p} = \frac{P_{\rm H_2}^2 P_{\rm O_2}}{P_{\rm H_2O}^2}$$
$$= \frac{(0.0045)^2 (0.0030)^2}{(0.040)^2}$$
$$K_{\rm p} = 3.8 \times 10^{-5}$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm,

 $2 H_2O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. Now calculate the K_c value. $2 H_2 O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. Now calculate the K_c value. $2 H_2 O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

Start from the K_p expression.

$$K_{\rm p} = 3.7_9 \times 10^{-5}$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. Now calculate the K_c value. $2 H_2O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

Start from the K_p expression.

$$K_{\rm p} = 3.7_9 \times 10^{-5}$$

$$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. Now calculate the K_c value. $2 H_2O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

Start from the K_p expression.

$$K_{\rm p} = 3.7_9 \times 10^{-5}$$

$$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$$

$$\Delta n = \Sigma n_{\text{products}} - \Sigma n_{\text{reactants}} = 3 - 2 = 1$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. Now calculate the K_c value. $2 H_2O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

Start from the K_p expression.

$$K_{\rm p} = 3.7_9 \times 10^{-5}$$

$$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$$

3.7₉ × 10⁻⁵ = $K_{\rm c} (0.08206 \times 1200)^1$

$$\Delta n = \Sigma n_{\text{products}} - \Sigma n_{\text{reactants}} = 3 - 2 = 1$$

At 1200 K, the partial pressures of an equilibrium mixture of H_2O , H_2 , and O_2 gases are 0.040, 0.0045, and 0.0030 atm, respectively. Calculate the value of the equilibrium constant K_p for the reaction at 1200 K. Now calculate the K_c value. $2 H_2O(g) \rightleftharpoons 2 H_2(g) + O_2(g)$

- answer -

Start from the K_p expression.

$$K_{\rm p} = 3.7_9 \times 10^{-5}$$

$$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$$

 $3.7_9 \times 10^{-5} = K_{\rm c} (0.08206 \times 1200)^1$
 $K_{\rm c} = 3.9 \times 10^{-7}$

$$\Delta n = \Sigma n_{\text{products}} - \Sigma n_{\text{reactants}} = 3 - 2 = 1$$

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M. Calculate the value of K_c for this reaction.

- answer -

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M. Calculate the value of K_c for this reaction.

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

- answer -

The first step should always be to write the balanced chemical equation, but that's done for us.

Calculate the value of K_c for this reaction.

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

- answer -

The first step should always be to write the balanced chemical equation, but that's done for us. The second step is to write the equilibrium expression based on the Law of Mass Action for the balanced chemical equation.

$$K_{\rm c} = \frac{[\rm NO]^2}{[\rm N_2][\rm O_2]}$$

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M.

Calculate the value of K_c for this reaction.

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

- answer -

The first step should always be to write the balanced chemical equation, but that's done for us. The second step is to write the equilibrium expression based on the Law of Mass Action for the balanced chemical equation. Next, we can calculate the equilibrium constant by inserting the equilibrium concentrations given to us.

$$K_{\rm c} = \frac{[\rm NO]^2}{[\rm N_2][\rm O_2]}$$
$$= \frac{(3.1)^2}{(3.3)(5.8)}$$
$$K_{\rm c} = 0.50$$

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M.

Calculate the value of K_c for this reaction. What is the equilibrium constant for the reverse reaction?

- answer -

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M. $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

Calculate the value of K_c for this reaction. What is the equilibrium constant for the reverse reaction?

- answer -

Recognize that the reverse process would be:

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M. $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

Calculate the value of K_c for this reaction. What is the equilibrium constant for the reverse reaction?

- answer -

Recognize that the reverse process would be:

The equilibrium expression for this would be:

$$K_{\rm c} = \frac{[N_2][O_2]}{[NO]^2}$$

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M. $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

Calculate the value of K_c for this reaction. What is the equilibrium constant for the reverse reaction?

- answer -

Recognize that the reverse process would be:

The equilibrium expression for this would be:

$$K_{\rm c} = \frac{[N_2][O_2]}{[NO]^2}$$
$$= \frac{(3.3)(5.8)}{(3.1)^2}$$
$$K_{\rm c} = 2.0$$

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M. $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

At equilibrium, the concentrations of gaseous N₂, O₂, and NO in a container are $[N_2] = 3.3$ M, $[O_2] = 5.8$ M, and [NO] = 3.1 M. Calculate the value of K_c for this reaction. What is the equilibrium constant for the reverse reaction? $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

- answer -

Recognize that the reverse process would be:

The equilibrium expression for this would be:

$$K_{\rm c} = \frac{[N_2][O_2]}{[NO]^2}$$
$$= \frac{(3.3)(5.8)}{(3.1)^2}$$
$$K_{\rm c} = 2.0$$

Understand that the relationship between the forward and reverse K expression is simply:

$$K_{\rm c}^{\rm reverse} = \frac{1}{K_{\rm c}^{\rm forward}}$$

Calculate the value of K_p at 298 K for the reaction

From the following two K_p values at 298K.

- $N_{2}(g) + O_{2}(g) =$ (1)
- $2 \text{ NO (g)} + \text{O}_2$ (g (2)

- answer -

 $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$

$$\Rightarrow 2 \text{ NO (g)}$$
 $K_{\text{p}}^{(1)} = 4.4 \times 10^{-31}$
(g) $\Rightarrow 2 \text{ NO}_2$ (g) $K_{\text{p}}^{(2)} = 2.4 \times 10^{12}$

Calculate the value of K_p at 298 K for the reaction

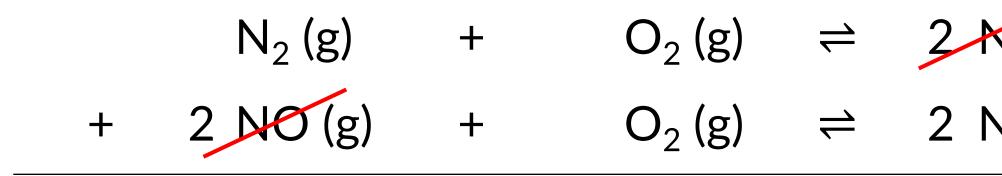
 $N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$

From the following two K_p values at 298K.

- (1) $N_2(g) + O_2(g) \rightleftharpoons$
- (2) $2 \text{ NO}(g) + O_2(g)$

- answer -

Similar to Hess's Law, we can combine equations (1) and (2) together.



$$angle 2 \text{ NO (g)}$$
 $K_{p}^{(1)} = 4.4 \times 10^{-31}$
(g) $angle 2 \text{ NO}_{2}$ (g) $K_{p}^{(2)} = 2.4 \times 10^{12}$

NO (g)
$$K_{\rm p}^{(1)}$$

NO₂ (g) $K_{\rm p}^{(2)}$

Calculate the value of K_p at 298 K for the reaction

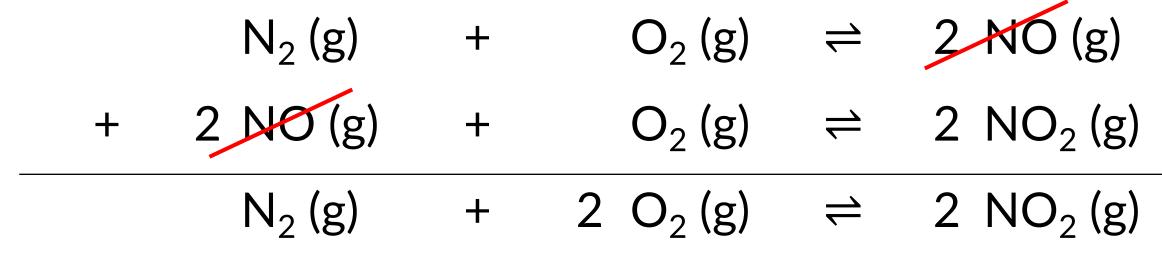
 $N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$

From the following two K_p values at 298K.

- (1)
- (2)

- answer -

Similar to Hess's Law, we can combine equations (1) and (2) together.



 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$ $K_p^{(1)} = 4.4 \times 10^{-31}$ $2 \text{ NO (g)} + \text{O}_2(\text{g}) \rightleftharpoons 2 \text{ NO}_2(\text{g}) \quad K_p^{(2)} = 2.4 \times 10^{12}$

> $K_{\rm p}^{(1)}$ $K_{\rm p}^{(2)}$ K_p

Calculate the value of K_p at 298 K for the reaction

 $N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$

From the following two K_p values at 298K.

(1)
$$N_2(g) + O_2(g) \rightleftharpoons 2 \text{ NO}(g)$$
 $K_p^{(1)} = 4.4 \times 10^{-31}$
(2) $2 \text{ NO}(g) + O_2(g) \rightleftharpoons 2 \text{ NO}_2(g)$ $K_p^{(2)} = 2.4 \times 10^{12}$

- answer -

Similar to Hess's Law, we can combine equations (1) and (2) together. But, to find the combined Kp involves multiply (instead of addition) and division (instead of subtraction).

	N ₂ (g)	+	O ₂ (g)	_	21
+	2 NO (g)	+	O ₂ (g)	\	2 I
	N ₂ (g)	+	2 O ₂ (g)	4	2

2 NO (g)
$$K_{p}^{(1)}$$

2 NO₂ (g) $K_{p}^{(2)}$
2 NO₂ (g) $K_{p} = K_{p}^{(1)} \times K_{p}^{(2)}$

Calculate the value of K_p at 298 K for the reaction

 $N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$

From the following two K_p values at 298K.

(1)
$$N_2(g) + O_2(g) \rightleftharpoons 2 \text{ NO}(g)$$
 $K_p^{(1)} = 4.4 \times 10^{-31}$
(2) $2 \text{ NO}(g) + O_2(g) \rightleftharpoons 2 \text{ NO}_2(g)$ $K_p^{(2)} = 2.4 \times 10^{12}$

- answer -

Similar to Hess's Law, we can combine equations (1) and (2) together. But, to find the combined Kp involves multiply (instead of addition) and division (instead of subtraction).

	N ₂ (g)	+	O ₂ (g)	\	2 1
+	2 NO (g)	+	O ₂ (g)	\rightleftharpoons	2 N
	N ₂ (g)	+	2 O ₂ (g)	; ;	2 N

NO (g)
$$K_p^{(1)}$$

NO₂ (g) $K_p^{(2)}$
NO₂ (g) $K_p = K_p^{(1)} \times K_p^{(2)}$
 $= (4.4 \times 10^{-31})(2.4 \times 10^{12})$
 $K_p = 1.1 \times 10^{-18}$

