U \sim ?
 CALCULATIONS INVOLVING EQUILIBRIUM

CHEMISTRY 165 // SPRING 2020

PRACTICE PROBLEM 1

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

PRACTICE PROBLEM 1

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
$\mathrm{H}_{2}+\quad \mathrm{I}_{2} \quad \rightleftharpoons 2 \mathrm{HI}$

PRACTICE PROBLEM 1

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant. $\quad K_{\mathrm{c}}=\frac{[\mathrm{H}]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

PRACTICE PROBLEM 1

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

\author{

- ansceer -
}

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

	$\mathrm{H}_{2}+\mathrm{I}_{2}$	\rightleftharpoons	2 HI
I			
C			
E			

PRACTICE PROBLEM 1

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

\author{

- anster -
}

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

List the initial concentrations here. \longrightarrow| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | H_{2} | $+\quad \mathrm{I}_{2}$ | \rightleftharpoons | 2 HI |
| I | | | | |
| E | | | | |

PRACTICE PROBLEM 1

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

```
- ansceer -
```

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

		H_{2}	+	I_{2}	\rightleftharpoons	2 HI
List the initial concentrations here.	1	1.00 M		2.00 M		0
List the stoichiometric changes here.	C	- X		- X		$+2 x$
	E					

PRACTICE PROBLEM

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

\author{

- ansieer -
}
$\begin{array}{ll}\text { Step 1: Write down the balanced chemical equation for the equilibrium. } & K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\ \text { Step 2: Write down the expression for the equilibrium constant. }\end{array}$

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

How do I know what to put here? Because we start with only reactants $(\mathrm{Q}<\mathrm{K}$), the reaction will shift right; hence we subtract some value " x " from our reactants and add some value " $2 x$ " to our product. The value of " x " will reflect the stoichiometry in the balanced equation; hence H_{2} and I_{2} decrease by " 1 x " and HI increases by " $2 x$."

PRACTICE PROBLEM

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

\author{

- ansieer -
}
$\begin{array}{ll}\text { Step 1: Write down the balanced chemical equation for the equilibrium. } & K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\ \text { Step 2: Write down the expression for the equilibrium constant. } & \end{array}$

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

		H_{2}	+	I_{2}	\rightleftharpoons	2 HI
List the initial concentrations here.	1	1.00 M		2.00 M		0
List the stoichiometric changes here	C	- x		- x		$+2 x$
List the equilibrium values here.	E	$1.00-\mathrm{x}$		$2.00-\mathrm{x}$		2 x

How do I know what to put here?
Because we start with only reactants ($\mathrm{Q}<\mathrm{K}$), the reaction will shift right; hence we subtract some value " x " from our reactants and add some value " $2 x$ " to our product. The value of " x " will reflect the stoichiometry in the balanced equation; hence H_{2} and I_{2} decrease by " 1 x " and HI increases by " $2 x$."

PRACTICE PROBLEM

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

\author{

- answer -
}

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.
Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)
Step 4: Use the Equilibrium (E) values to plug into the K_{c} expression.

$$
\begin{aligned}
K_{\mathrm{c}} & =\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
50.5 & =\frac{(2 \mathrm{x})^{2}}{(1.00-\mathrm{x})(2.00-\mathrm{x})}
\end{aligned}
$$

PRACTICE PROBLEM

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)
Step 4: Use the Equilibrium (E) values to plug into the K_{c} expression.

$$
50.5=\frac{(2 \mathrm{x})^{2}}{(1.00-\mathrm{x})(2.00-\mathrm{x})}
$$

Step 5: Solve for " x " and for the equilibrium concentrations.

		H_{2}	+	I_{2}	\rightleftharpoons	2 HI	
List the initial concentrations here.	1	1.00 M		2.00 M		0	
List the stoichiometric changes here.	C	- x		- x		+ 2 x	How do I know what to put here?
List the equilibrium values here.	E	$1.00-\mathrm{x}$		$2.00-\mathrm{x}$		2 x	Because we start with only reactants ($\mathrm{Q}<\mathrm{K}$), the reaction will shift right; hence we subtract some value " x " from our reactants and add some value " $2 x$ " to our product. The value of " x " will reflect the stoichiometry in the balanced equation; hence H_{2} and I_{2} decrease by " $1 x$ " and HI increases by " $2 x$."

PRACTICE PROBLEM

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)
Step 4: Use the Equilibrium (E) values to plug into the K_{c} expression.
Step 5: Solve for " x " and for the equilibrium concentrations.

$$
\begin{aligned}
50.5 & =\frac{(2 x)^{2}}{(1.00-x)(2.00-x)} \\
x & =2.32 \\
x & =0.935
\end{aligned}
$$

		H_{2}	+	I_{2}	\rightleftharpoons	2 HI	
List the initial concentrations here.	1	1.00 M		2.00 M		0	
List the stoichiometric changes here.	C	- x		- x		+ 2 x	How do I know what to put here?
List the equilibrium values here.	E	$1.00-\mathrm{x}$		$2.00-\mathrm{x}$		2 x	Because we start with only reactants ($\mathrm{Q}<\mathrm{K}$), the reaction will shift right; hence we subtract some value " x " from our reactants and add some value " $2 x$ " to our product. The value of " x " will reflect the stoichiometry in the balanced equation; hence H_{2} and I_{2} decrease by " $1 x$ " and HI increases by " $2 x$."

PRACTICE PROBLEM

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

\author{

- answer -
}

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)
Step 4: Use the Equilibrium (E) values to plug into the K_{c} expression.
Step 5: Solve for " x " and for the equilibrium concentrations.

$$
50.5=\frac{(2 \mathrm{x})^{2}}{(1.00-\mathrm{x})(2.00-\mathrm{x})}
$$

$$
x=0.935
$$

Solving the quadratic formula gives two results for "x." However, $x \neq 2.32$ because that would give us negative values of concentrations at equilibrium! So $x=0.935$.

		H_{2}	$+$	I_{2}	\rightleftharpoons	2 HI
List the initial concentrations here.	1	1.00 M		2.00 M		0
List the stoichiometric changes here	C	- X		- x		$+2 x$
List the equilibrium values here.	E	$1.00-\mathrm{x}$		$2.00-x$		2 x

How do I know what to put here?
Because we start with only reactants $(\mathrm{Q}<\mathrm{K})$, the reaction will shift right; hence we subtract some value " x " from our reactants and add some value " $2 x$ " to our product. The value of " x " will reflect the stoichiometry in the balanced equation; hence H_{2} and I_{2} decrease by " 1 x " and HI increases by " 2 x ."

PRACTICE PROBLEM

A 1.00 L containers holds 1.00 moles of H_{2} gas and 2.00 moles of I_{2} gas, which react to form HI gas.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5 \text { at } 298 \mathrm{~K}
$$

Calculate the equilibrium concentrations of the $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI gases.

- ansioer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

$$
\begin{aligned}
K_{\mathrm{c}} & =\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
50.5 & =\frac{(2 \mathrm{x})^{2}}{(1.00-\mathrm{x})(2.00-\mathrm{x})}
\end{aligned}
$$

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)
Step 4: Use the Equilibrium (E) values to plug into the K_{c} expression.
Step 5: Solve for " x " and for the equilibrium concentrations.

$$
x=0.935
$$

Solving the quadratic formula gives two results for "x." However, $x \neq 2.32$ because that would give us negative values of concentrations at equilibrium! So $x=0.935$.

		H_{2}	+	I_{2}	\rightleftharpoons
List the initial concentrations here.	$\longrightarrow \mathrm{I}$	1.00 M	2.00 M	0	
List the stoichiometric changes here.	$\longrightarrow \mathrm{C}$	-x	-x		+2 x
List the equilibrium values here.	$\longrightarrow \mathrm{E}$	$1.00-\mathrm{x}$	$2.00-\mathrm{x}$		2 x

$$
\begin{gathered}
{\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=1.00 \mathrm{M}-\mathrm{x}=1.00 \mathrm{M}-0.935 \mathrm{M}=0.07 \mathrm{M}} \\
{\left[\mathrm{I}_{2}\right]_{\mathrm{eq}}=2.00 \mathrm{M}-\mathrm{x}=2.00 \mathrm{M}-0.935 \mathrm{M}=1.07 \mathrm{M}} \\
{[\mathrm{HI}]_{\mathrm{eq}}=2 \mathrm{x}=2(0.935 \mathrm{M})=1.87 \mathrm{M}}
\end{gathered}
$$

How do I know what to put here?
Because we start with only reactants ($\mathrm{Q}<\mathrm{K}$), the reaction will shift right; hence we subtract some value " x " from our reactants and add some value " $2 x$ " to our product. The value of " x " will reflect the stoichiometry in the balanced equation; hence H_{2} and I_{2} decrease by " $1 x$ " and HI increases by " $2 x$."

PRACTICE PROBLEM 2

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{3}^{-}(\mathrm{aq})
$$

Iodine and iodide react to form triiodide ions. Assume you start with $\left[\mathrm{I}_{2}\right]=\left[\mathrm{I}^{-}\right]=1.000 \times 10^{-3} \mathrm{M}$. If, at equilibrium, the concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$, what is the equilibrium constant for this reaction?

PRACTICE PROBLEM 2

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{3}^{-}(\mathrm{aq})
$$

lodine and iodide react to form triiodide ions. Assume you start with $\left[I_{2}\right]=\left[I^{-}\right]=1.000 \times 10^{-3} \mathrm{M}$. If, at equilibrium, the concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$, what is the equilibrium constant for this reaction?

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{I}_{3}^{-}\right]}{\left[\mathrm{I}_{2}\right]\left[\mathrm{I}^{-}\right]}$
Step 2: Write down the expression for the equilibrium constant.
Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

	I_{2}	+	I^{-}	\rightleftharpoons
I				
C				
E				

PRACTICE PROBLEM 2

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{3}^{-}(\mathrm{aq})
$$

lodine and iodide react to form triiodide ions. Assume you start with $\left[I_{2}\right]=\left[I^{-}\right]=1.000 \times 10^{-3} \mathrm{M}$. If, at equilibrium, the concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$, what is the equilibrium constant for this reaction?

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{I}_{3}^{-}\right]}{\left[\mathrm{I}_{2}\right]\left[\mathrm{I}^{-}\right]}$
Step 2: Write down the expression for the equilibrium constant.
Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

	I_{2}	+	I^{-}	\rightleftharpoons
I	$1.000 \times 10^{-3} \mathrm{M}$	1.000×10^{-3}	I_{3}^{-}	
C	-x	-x	0	
E	$1.000 \times 10^{-3}-\mathrm{x}$	$1.000 \times 10^{-3}-\mathrm{x}$	+x	
		x		

PRACTICE PROBLEM 2

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{3}^{-}(\mathrm{aq})
$$

lodine and iodide react to form triiodide ions. Assume you start with $\left[I_{2}\right]=\left[I^{-}\right]=1.000 \times 10^{-3} \mathrm{M}$. If, at equilibrium, the concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$, what is the equilibrium constant for this reaction?

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{I}_{3}^{-}\right]}{\left[\mathrm{I}_{2}\right]\left[\mathrm{I}^{-}\right]}$
Step 2: Write down the expression for the equilibrium constant.

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

What is " x " though?

They tell us that the equilibrium concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$. This means that:

$$
\begin{aligned}
{\left[\mathrm{I}_{2}\right]_{\mathrm{eq}} } & =1.000 \times 10^{-3}-\mathrm{x} \\
6.61 \times 10^{-4} \mathrm{M} & =1.000 \times 10^{-3}-\mathrm{x} \\
\mathrm{x} & =3.39 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

So, let's re-write the ICE chart with the value of x plugged in.

	I_{2}	+	I^{-}	\rightleftharpoons
I	$1.000 \times 10^{-3} \mathrm{M}$	1.000×10^{-3}	$\mathrm{I}_{3}{ }^{-}$	
C	-x	-x	0	
E	$1.000 \times 10^{-3}-\mathrm{x}$	$1.000 \times 10^{-3}-\mathrm{x}$	+x	
			x	

PRACTICE PROBLEM 2

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{3}^{-}(\mathrm{aq})
$$

lodine and iodide react to form triiodide ions. Assume you start with $\left[I_{2}\right]=\left[I^{-}\right]=1.000 \times 10^{-3} \mathrm{M}$. If, at equilibrium, the concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$, what is the equilibrium constant for this reaction?

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. $\quad K_{\mathrm{C}}=\frac{\left[\mathrm{I}_{3}^{-}\right]}{\left[\mathrm{I}_{2}\right]\left[\mathrm{I}^{-}\right]}$
Step 2: Write down the expression for the equilibrium constant.

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

What is " x " though?

They tell us that the equilibrium concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$. This means that:

$$
\begin{aligned}
{\left[\mathrm{I}_{2}\right]_{\mathrm{eq}} } & =1.000 \times 10^{-3}-\mathrm{x} \\
6.61 \times 10^{-4} \mathrm{M} & =1.000 \times 10^{-3}-\mathrm{x} \\
\mathrm{x} & =3.39 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

So, let's re-write the ICE chart with the value of x plugged in.

	I_{2}	+	I^{-}	\rightleftharpoons
I	$1.000 \times 10^{-3} \mathrm{M}$	1.000×10^{-3}		$\mathrm{I}_{3}{ }^{-}$
C	-x	-x		+x
E	$1.000 \times 10^{-3}-\mathrm{x}$	$1.000 \times 10^{-3}-\mathrm{x}$		x
	I_{2}	+	I^{-}	\rightleftharpoons
I	$1.000 \times 10^{-3} \mathrm{M}$	1.000×10^{-3}	$\mathrm{I}_{3}{ }^{-}$	
C	-3.39×10^{-4}	-3.39×10^{-4}	0	
E	6.61×10^{-4}	6.61×10^{-4}		$+3.39 \times 10^{-4}$

PRACTICE PROBLEM 2

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{3}^{-}(\mathrm{aq})
$$

lodine and iodide react to form triiodide ions. Assume you start with $\left[I_{2}\right]=\left[I^{-}\right]=1.000 \times 10^{-3} \mathrm{M}$. If, at equilibrium, the concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$, what is the equilibrium constant for this reaction?

- anster -

Step 1: Write down the balanced chemical equation for the equilibrium. $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{I}_{3}^{-}\right]}{\left[\mathrm{I}_{2}\right]\left[\mathrm{I}^{-}\right]}$
Step 2: Write down the expression for the equilibrium constant.
Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

$$
=\frac{3.39 \times 10^{-4}}{\left(6.61 \times 10^{-4}\right)\left(6.61 \times 10^{-4}\right)}
$$

Step 4: Use the Equilibrium (E) values to plug into the K_{c} expression.

$$
K_{\mathrm{c}}=776
$$

What is " x " though?

They tell us that the equilibrium concentration of I_{2} is $6.61 \times 10^{-4} \mathrm{M}$. This means that:

$$
\begin{aligned}
{\left[\mathrm{I}_{2}\right]_{\mathrm{eq}} } & =1.000 \times 10^{-3}-\mathrm{x} \\
6.61 \times 10^{-4} \mathrm{M} & =1.000 \times 10^{-3}-\mathrm{x} \\
\mathrm{x} & =3.39 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

So, let's re-write the ICE chart with the value of x plugged in.

	I_{2}	+	I^{-}	\rightleftharpoons
I	$1.000 \times 10^{-3} \mathrm{M}$	1.000×10^{-3}		I_{3}^{-}
C	-x	-x		+x
E	$1.000 \times 10^{-3}-\mathrm{x}$	$1.000 \times 10^{-3}-\mathrm{x}$		x
	I_{2}	+	I^{-}	\rightleftharpoons
I	$1.000 \times 10^{-3} \mathrm{M}$	1.000×10^{-3}	I_{3}^{-}	
C	-3.39×10^{-4}	-3.39×10^{-4}	0	
E	6.61×10^{-4}	6.61×10^{-4}	3.39×10^{-4}	
			3.39×10^{-4}	

PRACTICE PROBLEM3

Calculate the equilibrium pressure of S_{2} gas in an equilibrium mixture that results from the decomposition of $\mathrm{H}_{2} \mathrm{~S}$ gas with an initial concentration of 0.824 atm .

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.2 \times 10^{-6}
$$

PRACTICE PROBLEM 3

Calculate the equilibrium pressure of S_{2} gas in an equilibrium mixture that results from the decomposition of $\mathrm{H}_{2} \mathrm{~S}$ gas with an initial concentration of 0.824 atm .

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.2 \times 10^{-6}
$$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.
Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{H}_{2}}^{2} P_{\mathrm{S}_{2}}}{P_{\mathrm{H}_{2} \mathrm{~S}}^{2}}
$$

$2 \mathrm{H}_{2} \mathrm{~S} \quad \rightleftharpoons \quad 2 \mathrm{H}_{2} \quad+\quad \mathrm{S}_{2}$

1
C
E

PRACTICE PROBLEM 3

Calculate the equilibrium pressure of S_{2} gas in an equilibrium mixture that results from the decomposition of $\mathrm{H}_{2} \mathrm{~S}$ gas with an initial concentration of 0.824 atm .

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.2 \times 10^{-6}
$$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.
Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)
Step 4: Use the Equilibrium (E) values to plug into the K_{p} expression.

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{P_{\mathrm{H}_{2}}^{2} P_{\mathrm{S}_{2}}}{P_{\mathrm{H}_{2} \mathrm{~S}}} \\
2.2 \times 10^{-6} & =\frac{(2 \mathrm{x})^{2}(\mathrm{x})}{(0.824-2 \mathrm{x})^{2}}
\end{aligned}
$$

	$2 \mathrm{H}_{2} \mathrm{~S}$	\rightleftharpoons	$2 \mathrm{H}_{2}$	+
I	0.824 atm	0		$\mathrm{~S}_{2}$
C	-2 x		+2 x	
E	$0.824-2 \mathrm{x}$		2 x	
			x	

PRACTICE PROBLEM 3

Calculate the equilibrium pressure of S_{2} gas in an equilibrium mixture that results from the decomposition of $\mathrm{H}_{2} \mathrm{~S}$ gas with an initial concentration of 0.824 atm .

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.2 \times 10^{-6}
$$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

Step 4: Use the Equilibrium (E) values to plug into the K_{p} expression.

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{P_{\mathrm{H}_{2}}^{2} P_{\mathrm{S}_{2}}}{P_{\mathrm{H}_{2} \mathrm{~S}}} \\
2.2 \times 10^{-6} & =\frac{(2 \mathrm{x})^{2}(\mathrm{x})}{(0.824-2 \mathrm{x})^{2}}
\end{aligned}
$$

	$2 \mathrm{H}_{2} \mathrm{~S}$	\rightleftharpoons	$2 \mathrm{H}_{2}$	+
I	0.824 atm		0	
C	-2 S		+2 S	
E	$0.824-2 \mathrm{x}$		2 x	

What is " x " though?

We know K_{p} is very small ($\sim 10^{-6}$), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).
What this means for us is that our system will have to undergo very little change (the " x " value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

$$
0.824-2 x \approx 0.824-2(0) \approx 0.824
$$

PRACTICE PROBLEM 3

Calculate the equilibrium pressure of S_{2} gas in an equilibrium mixture that results from the decomposition of $\mathrm{H}_{2} \mathrm{~S}$ gas with an initial concentration of 0.824 atm .

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.2 \times 10^{-6}
$$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

Step 4: Use the Equilibrium (E) values to plug into the K_{p} expression.

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{P_{\mathrm{H}_{2}}^{2} P_{\mathrm{S}_{2}}}{P_{\mathrm{H}_{2} \mathrm{~S}}} \\
2.2 \times 10^{-6} & =\frac{(2 \mathrm{x})^{2}(\mathrm{x})}{(0.824-2 \mathrm{x})^{2}}
\end{aligned}
$$

Step 5: Approximate x to be small, solve for x and partial pressure of S_{2} gas.

	$2 \mathrm{H}_{2} \mathrm{~S}$	\rightleftharpoons	$2 \mathrm{H}_{2}$	+
I	0.824 atm		0	
C	-2 x		+2 x	
E	$0.824-2 \mathrm{x}$		2 x	
				+x
			x	

What is " x " though?

We know K_{p} is very small ($\sim 10^{-6}$), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).
What this means for us is that our system will have to undergo very little change (the " x " value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

$$
0.824-2 x \approx 0.824-2(0) \approx 0.824
$$

PRACTICE PROBLEM 3

Calculate the equilibrium pressure of S_{2} gas in an equilibrium mixture that results from the decomposition of $\mathrm{H}_{2} \mathrm{~S}$ gas with an initial concentration of 0.824 atm .

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.2 \times 10^{-6}
$$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

Step 4: Use the Equilibrium (E) values to plug into the K_{p} expression.
Step 5: Approximate x to be small, solve for x and partial pressure of S_{2} gas.

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{P_{\mathrm{H}_{2}}^{2} P_{\mathrm{S}_{2}}}{P_{\mathrm{H}_{2} \mathrm{~S}}^{2}} \\
2.2 \times 10^{-6} & =\frac{(2 \mathrm{x})^{2}(\mathrm{x})}{(0.824-2 \mathrm{x})^{2}} \\
2.2 \times 10^{-6} & \approx \frac{(2 \mathrm{x})^{2}(\mathrm{x})}{(0.824)^{2}}
\end{aligned}
$$

	$2 \mathrm{H}_{2} \mathrm{~S}$	\rightleftharpoons	$2 \mathrm{H}_{2}$	+
I	0.824 atm	0		$\mathrm{~S}_{2}$
C	-2 x		+2 x	
E	$0.824-2 \mathrm{x}$		2 x	
			x	

What is " x " though?

We know K_{p} is very small ($\sim 10^{-6}$), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).
What this means for us is that our system will have to undergo very little change (the " x " value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

$$
0.824-2 x \approx 0.824-2(0) \approx 0.824
$$

PRACTICE PROBLEM 3

Calculate the equilibrium pressure of S_{2} gas in an equilibrium mixture that results from the decomposition of $\mathrm{H}_{2} \mathrm{~S}$ gas with an initial concentration of 0.824 atm .

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.2 \times 10^{-6}
$$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium.
Step 2: Write down the expression for the equilibrium constant.

Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

Step 4: Use the Equilibrium (E) values to plug into the K_{p} expression.
Step 5: Approximate x to be small, solve for x and partial pressure of S_{2} gas.

	$2 \mathrm{H}_{2} \mathrm{~S}$	\rightleftharpoons	$2 \mathrm{H}_{2}$	+
I	0.824 atm		0	
C	-2 x		+2 x	
E	$0.824-2 \mathrm{x}$		2 x	
			+x	
			x	

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{P_{\mathrm{H}_{2}}^{2} P_{\mathrm{S}_{2}}}{P_{\mathrm{H}_{2} \mathrm{~S}}^{2}} \\
2.2 \times 10^{-6} & =\frac{(2 \mathrm{x})^{2}(\mathrm{x})}{(0.824-2 \mathrm{x})^{2}} \\
2.2 \times 10^{-6} & \approx \frac{(2 \mathrm{x})^{2}(\mathrm{x})}{(0.824)^{2}} \\
2.2 \times 10^{-6} & =\frac{4 \mathrm{x}^{3}}{(0.824)^{2}} \\
\mathrm{x} & =0.0072 \mathrm{~atm}=P_{\mathrm{S}_{2}}
\end{aligned}
$$

What is " x " though?

We know K_{p} is very small ($\sim 10^{-6}$), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).
What this means for us is that our system will have to undergo very little change (the " x " value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

$$
0.824-2 x \approx 0.824-2(0) \approx 0.824
$$

