EQUILIBRIUM

CHEMISTRY 165 // SPRING 2020

A 1.00 L containers holds 1.00 moles of H_2 gas and 2.00 moles of I_2 gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ $K_c = 50.5 \text{ at } 298 \text{ K}$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ $K_c = 50.5 \text{ at } 298 \text{ K}$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the equilibrium.

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ $K_c = 50.5 \text{ at } 298 \text{ K}$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the equilibrium. $K_{\rm c} = \frac{[\rm HI]^2}{[\rm H_2][\rm I_2]}$ Step 2: Write down the expression for the equilibrium constant.

<u> </u>

2 HI I_2 \neq

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ $K_c = 50.5 \text{ at } 298 \text{ K}$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the equilibrium. $K_{\rm c} = \frac{[\rm HI]^2}{[\rm H_2][\rm I_2]}$ Step 2: Write down the expression for the equilibrium constant. Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

	H_2	+
	_	
С		
Е		

2 HI \Rightarrow I_2

A 1.00 L containers holds 1.00 moles of H_2 gas and 2.00 moles of I_2 gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constar Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

quilibrium.

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$
nt.

- I ₂	 2 HI	
2.00 M	0	

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

quilibrium.

$$K_{\rm c} = \frac{[{\rm HI}]^2}{[{\rm H}_2][{\rm I}_2]}$$
nt.

-	I ₂	⇒	2 HI	
	2.00 M		0	
	- x		+ 2x	

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constar Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

quilibrium.

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$
nt.

F	$ _2 \rightleftharpoons$	2 HI	
2.0	0 M	0	
_	×	+ 2x◀	

How do I know what to put here? Because we start with reactants (Q < K), the reaction will shift right; hence we subtract some value "x" from our reactants and add some value "2x" to our product. The value of "x" will reflect the stoichiometry in the balanced equation; hence H_2 and I_2 decrease by "1x" and HI increases by "2x."

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

quilibrium.

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$
nt.

			_
I ₂	4	2 HI	
2.00 M		0	
- x		+ 2x ←	- How do I know what to put h
2.00 – x		2x	Because we start with reactants (Q < K), the reaction shift right; hence we subtract value "x" from our reactants a some value "2x" to our product value of "x" will reflect stoichiometry in the back

equation; hence H_2 and I_2 decrease by "1x" and HI increases by "2x."

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constan Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_c expression.

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

puilibrium.

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$50.5 = \frac{(2x)^{2}}{(1.00 - x)(2.00 - x)}$$

ł	I ₂	4	2 HI	
	2.00 M		0	
	- x		+ 2x ←	How do
	2.00 – x		2x	Because
			· · ·	reactant
				shift rig

I know what to put here? start with we is (Q < K), the reaction will shift right; hence we subtract some value "x" from our reactants and add some value "2x" to our product. The value of "x" will reflect the stoichiometry in the balanced equation; hence H_2 and I_2 decrease by "1x" and HI increases by "2x."

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constan Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_c expression. Step 5: Solve for "x" and for the equilibrium concentrations.

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

puilibrium.

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$50.5 = \frac{(2x)^{2}}{(1.00 - x)(2.00 - x)}$$

ł	I ₂	4	2 HI	
	2.00 M		0	
	- x		+ 2x ◀	How do
	2.00 – x		2x	Because
			· · ·	reactant
				shift rig

I know what to put here? start with we is (Q < K), the reaction will right; hence we subtract some value "x" from our reactants and add some value "2x" to our product. The value of "x" will reflect the stoichiometry in the balanced equation; hence H_2 and I_2 decrease by "1x" and HI increases by "2x."

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the education for the educatio Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_c expression Step 5: Solve for "x" and for the equilibrium concentrations.

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

quilibrium.	[]	$HI]^2$	
nt.	$K_{\rm c} = \overline{[{\rm H}]}$	$_{2}][I_{2}]$	
ession.	$50.5 = \frac{1}{(1.5)}$ x = 2.3 x = 0.9	$(2x)^2$ $(2x)^2$ $(2.00)^2$	0 – x)
+ l ₂	_	2 HI	
2.00 N	Л	0	
- X		+ 2x ←	
2.00 –	Χ	2x	Because we start with reactants (Q < K), the reaction shift right; hence we subtract value "x" from our reactants an some value "2x" to our product value of "x" will reflect

stoichiometry in the equation; hence H_2 and I_2 decrease by "1x" and HI increases by "2x."

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constan Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_c expression Step 5: Solve for "x" and for the equilibrium concentrations.

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

	-		
nt.	$K_{\rm c} = \frac{[{\rm H}]}{[{\rm H}_2]}$	$\frac{II}{2}$	Solving the quadratic for gives two results for
ession.	$50.5 = \frac{1}{(1.0)}$ x = 2.3	$(2x)^2$ (2x)	However, $x \neq 2.32$ b that would give us needed (0 - x) values of concentration equilibrium! So $x = 0.935$
	x = 0.9	35	
· I ₂	\rightleftharpoons	2 HI	
2.00 M	1	0	
- X		+ 2x ←	— How do I know what to put he
2.00 –	Χ	2x	Because we start with reactants (Q < K), the reaction shift right; hence we subtract value "x" from our reactants a some value "2x" to our product value of "x" will reflect stoichiometry in the back

equation; hence H_2 and I_2 decrease by "1x" and HI increases by "2x."

A 1.00 L containers holds 1.00 moles of H₂ gas and 2.00 moles of I₂ gas, which react to form HI gas. $H_2(g) + I_2(g) \rightleftharpoons 2 HI$

Calculate the equilibrium concentrations of the H_2 , I_2 , and HI gases. - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constan Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_c expression Step 5: Solve for "x" and for the equilibrium concentrations.

$$[H_2]_{eq} = 1.00 \text{ M} - \text{x} = 1.00 \text{ M} - 0.93$$
$$[I_2]_{eq} = 2.00 \text{ M} - \text{x} = 2.00 \text{ M} - 0.933$$
$$[HI]_{eq} = 2\text{x} = 2(0.935 \text{ M}) = 2$$

(g)
$$K_{\rm c} = 50.5$$
 at 298 K

uilibrium	F-			
umprum.	$K_{c} = \frac{\lfloor \mathbf{H} \rfloor}{ \lfloor \mathbf{H} \rfloor}$	$\frac{1}{1}$		Solving the quadratic form
nt.		2][I ₂]		gives two results for However $x \neq 2.32$ bec
	505 =	$(2x)^2$		that would give us negative that would give the second se
scion	50.5 - (1.5)	(00 - x)(2.00)	(x - 0)	values of concentrations
:551011.	x = 2.3	2 -		equilibrium! So $x = 0.935$.
	x = 0.9	35		
			_	
l ₂		2 HI	_	
2.00 N	1	0		
- x		+ 2x ◀━━	- How	do I know what to put here
2.00 -	X	2x	Beca	ause we start with
			reac shift	right: hence we subtract so
5 M - 0.07	' М		valu	e "x" from our reactants and
5 - 0.07	1•1		som	e value "2x" to our product.
M = 1.07	Μ		valu	e of "x" will reflect
.87 M			stoid	hiometry in the balar
			equa	Ation; hence H_2 and I_2 decre
			DY	IX and HI increases by "2x."

 I_2 (aq) + I^- (aq) \rightleftharpoons I_3^- (aq)

lodine and iodide react to form triiodide ions. Assume you start with $[I_2] = [I^-] = 1.000 \times 10^{-3}$ M. If, at equilibrium, the concentration of I_2 is 6.61 × 10⁻⁴ M, what is the equilibrium constant for this reaction? - answer -

 $I_2(aq) +$

of I_2 is 6.61 × 10⁻⁴ M, what is the equilibrium constant for this reaction? - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

$$I^-$$
 (aq) $\rightleftharpoons I_3^-$ (aq)

quilibrium.
$$K_{c} = \frac{[I_{3}^{-}]}{[I_{2}][I^{-}]}$$
nt.

1	I —		—	
T			2	
	_		-3	

 $I_{2}(aq) +$

of I_2 is 6.61 × 10⁻⁴ M, what is the equilibrium constant for this reaction? - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

$$I^-$$
 (aq) $\rightleftharpoons I_3^-$ (aq)

quilibrium.
$$K_{c} = \frac{[I_{3}^{-}]}{[I_{2}][I^{-}]}$$
nt.

ł	- [-	4	l ₃ -
1	1.000×10^{-3}		0
	- X		+ x
X	$1.000 \times 10^{-3} - 3$	×	Х

 $I_{2}(aq) +$

of I_2 is 6.61 × 10⁻⁴ M, what is the equilibrium constant for this reaction? - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constar Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

What is "x" though? They tell us that the equilibrium concentration of I_2 is 6.61 × 10⁻⁴ M. This means that: $[I_2]_{eq} = 1.000 \times 10^{-3} - x$ $6.61 \times 10^{-4} \text{ M} = 1.000 \times 10^{-3} - \text{x}$ $x = 3.39 \times 10^{-4} M$

So, let's re-write the ICE chart with the value of x plugged in.

 1.000×10^{-3} M - X $1.000 \times 10^{-3} - x$ F

$$I^-$$
 (aq) $\rightleftharpoons I_3^-$ (aq)

quilibrium.
$$K_{c} = \frac{[I_{3}^{-}]}{[I_{2}][I^{-}]}$$
nt.

+	–	+	l ₃ -	
	1.000×10^{-3}		0	
	- X		+ x	
	$1.000 \times 10^{-3} - x$	7	Х	

 $I_{2}(aq) +$

of I_2 is 6.61 × 10⁻⁴ M, what is the equilibrium constant for this reaction? - answer -

Step 1: Write down the balanced chemical equation for the eq Step 2: Write down the expression for the equilibrium constar Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

What is "x" though? They tell us that the equilibrium concentration of I_2 is 6.61 × 10⁻⁴ M. This means that: $[I_2]_{eq} = 1.000 \times 10^{-3} - x$ $6.61 \times 10^{-4} \text{ M} = 1.000 \times 10^{-3} - \text{x}$ $x = 3.39 \times 10^{-4} M$

So, let's re-write the ICE chart with the value of x plugged in.

12 1.000×10^{-3} M - X $1.000 \times 10^{-3} - x$ F **1**₂ 1.000×10^{-3} M -3.39×10^{-4} С 6.61×10^{-4} Ε

$$I^-$$
 (aq) $\rightleftharpoons I_3^-$ (aq)

quilibrium.
$$K_{c} = \frac{[I_{3}^{-}]}{[I_{2}][I^{-}]}$$
nt.

	+	-	$\stackrel{\sim}{\leftarrow}$	l ₃ -
		1.000×10^{-3}		0
		- X		+ x
($1.000 \times 10^{-3} - x$		X
	Ŧ	—	\	l ₃ -
		1.000×10^{-3}		0
		- 3.39 × 10 ⁻⁴		$+ 3.39 \times 10^{-4}$
		6.61×10^{-4}		3.39×10^{-4}

 $I_{2}(aq) +$

of I_2 is 6.61 × 10⁻⁴ M, what is the equilibrium constant for this reaction? - answer -

Step 1: Write down the balanced chemical equation for the equ Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_c expression.

What is "x" though? They tell us that the equilibrium concentration of I_2 is 6.61 × 10⁻⁴ M. This means that: $[I_2]_{eq} = 1.000 \times 10^{-3} - x$ $6.61 \times 10^{-4} \text{ M} = 1.000 \times 10^{-3} - \text{x}$ $x = 3.39 \times 10^{-4} M$

So, let's re-write the ICE chart with the value of x plugged in.

 1.000×10^{-3} M - X $1.000 \times 10^{-3} - x$ F **1**₂ 1.000×10^{-3} M -3.39×10^{-4} С 6.61×10^{-4} Ε

$$I^-$$
 (aq) $\rightleftharpoons I_3^-$ (aq)

uilibrium.

$$K_{c} = \frac{[I_{3}^{-}]}{[I_{2}][I^{-}]}$$
t.

$$= \frac{3.39 \times 10^{-4}}{(6.61 \times 10^{-4})(6.61 \times 10^{-4})}$$
ssion

$$K_{c} = 776$$

+	-	\	l ₃ -
	1.000×10^{-3}		0
- X			+ x
	$1.000 \times 10^{-3} - x$		X

+	-	+	l ₃ -
	1.000×10^{-3}		0
	- 3.39 × 10 ⁻⁴		$+ 3.39 \times 10^{-4}$
	6.61 × 10 ⁻⁴		3.39 × 10 ⁻⁴

Calculate the equilibrium pressure of S_2 gas in an equilibrium mixture that results from the decomposition of H_2S gas with an initial concentration of 0.824 atm.

- answer -

 $2 H_2 S(g) \rightleftharpoons 2 H_2(g) + S_2(g)$ $K_p = 2.2 \times 10^{-6}$

Calculate the equilibrium pressure of S_2 gas in an equilibrium mixture that results from the decomposition of H_2S gas with an initial concentration of 0.824 atm.

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. Step 2: Write down the expression for the equilibrium constant. Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium)

	$2 H_2S$	 2 H ₂	+	
I				
С				
Е				

 $2 H_2 S(g) \rightleftharpoons 2 H_2(g) + S_2(g)$ $K_p = 2.2 \times 10^{-6}$

$$K_{\rm p} = \frac{P_{\rm H_2}^2 P_{\rm S_2}}{P_{\rm H_2}^2 S}$$

 S_2

Calculate the equilibrium pressure of S_2 gas in an equilibrium mixture that results from the decomposition of H_2S gas with an initial concentration of 0.824 atm.

 $2 H_2 S (g) \rightleftharpoons 2 H_2 (g) + S_2 (g) K_p$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. Step 2: Write down the expression for the equilibrium constan Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_p expre

	$2 H_2S$	\rightleftharpoons	2 H ₂	+	
I	0.824 atm		0		
С	- 2x		+ 2x		
Е	0.824 – 2x		2x		

$$K_{\rm p} = 2.2 \times 10^{-6}$$

nt.

$$K_{\rm p} = \frac{P_{\rm H_2}^2 P_{\rm S_2}}{P_{\rm H_2S}^2}$$
ession.

$$2.2 \times 10^{-6} = \frac{(2x)^2 (x)}{(0.824 - 2x)^2}$$

Х

Calculate the equilibrium pressure of S₂ gas in an equilibrium mixture that results from the decomposition of H_2S gas with an initial concentration of 0.824 atm.

 $2 H_2 S (g) \rightleftharpoons 2 H_2 (g)$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_p expre

	$2 H_2S$	\rightleftharpoons	2 H ₂	+	
I	0.824 atm		0		
С	- 2x		+ 2x		
Е	0.824 – 2x		2x		

What is "x" though?

We know $K_{\rm p}$ is very small (~10⁻⁶), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).

What this means for us is that our system will have to undergo very little change (the "x" value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

 $0.824 - 2x \approx 0.824 - 2(0) \approx 0.824$

$$K_{\rm p} = 2.2 \times 10^{-6}$$

nt.

$$K_{\rm p} = \frac{P_{\rm H_2}^2 P_{\rm S_2}}{P_{\rm H_2S}^2}$$
ession.

$$2.2 \times 10^{-6} = \frac{(2x)^2 (x)}{(0.824 - 2x)^2}$$

Calculate the equilibrium pressure of S_2 gas in an equilibrium mixture that results from the decomposition of H_2S gas with an initial concentration of 0.824 atm.

 $2 H_2 S (g) \rightleftharpoons 2 H_2 (g)$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_p expre Step 5: Approximate x to be small, solve for x and partial pressure of S_2 gas.

	$2 H_2S$	\	2 H ₂	+	
Ι	0.824 atm		0		
С	- 2x		+ 2x		
Е	0.824 – 2x		2x		

What is "x" though?

We know $K_{\rm p}$ is very small (~10⁻⁶), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).

What this means for us is that our system will have to undergo very little change (the "x" value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

 $0.824 - 2x \approx 0.824 - 2(0) \approx 0.824$

$$K_{\rm p} = 2.2 \times 10^{-6}$$

nt.

$$K_{\rm p} = \frac{P_{\rm H_2}^2 P_{\rm S_2}}{P_{\rm H_2S}^2}$$
ession.

$$2.2 \times 10^{-6} = \frac{(2x)^2 (x)}{(0.824 - 2x)^2}$$

Х

Calculate the equilibrium pressure of S_2 gas in an equilibrium mixture that results from the decomposition of H_2S gas with an initial concentration of 0.824 atm.

 $2 H_2 S (g) \rightleftharpoons 2 H_2 (g)$

- answer -

Step 1: Write down the balanced chemical equation for the equilibrium. Step 2: Write down the expression for the equilibrium constar Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_p expre Step 5: Approximate x to be small, solve for x and partial press

	$2 H_2S$	\	2 H ₂	+	
Ι	0.824 atm		0		
С	- 2x		+ 2x		
Е	0.824 – 2x		2x		

What is "x" though?

We know $K_{\rm p}$ is very small (~10⁻⁶), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).

What this means for us is that our system will have to undergo very little change (the "x" value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

 $0.824 - 2x \approx 0.824 - 2(0) \approx 0.824$

$$K_{\rm p} = 2.2 \times 10^{-6}$$

nt.

$$K_{p} = \frac{P_{H_{2}}^{2} P_{S_{2}}}{P_{H_{2}S}^{2}}$$
ession.
sure of S₂ gas.

$$2.2 \times 10^{-6} = \frac{(2x)^{2}(x)}{(0.824 - 2x)^{2}}$$

$$2.2 \times 10^{-6} \approx \frac{(2x)^{2}(x)}{(0.824)^{2}}$$

+ X

0

Х

Calculate the equilibrium pressure of S_2 gas in an equilibrium mixture that results from the decomposition of H_2S gas with an initial concentration of 0.824 atm.

 $2 H_2 S(g) \rightleftharpoons 2 H_2(g) + S_2(g)$ $K_n = 2.2 \times 10^{-6}$

- answer -

Step 1: Write down the balanced chemical equation for the e Step 2: Write down the expression for the equilibrium constant Step 3: Prepare an ICE chart (Initial, Change, and Equilibrium) Step 4: Use the Equilibrium (E) values to plug into the K_p expr Step 5: Approximate x to be small, solve for x and partial pres

	$2 H_2S$	\	2 H ₂	+	
Ι	0.824 atm		0		
С	- 2x		+ 2x		
Е	0.824 – 2x		2x		

What is "x" though?

We know $K_{\rm p}$ is very small (~10⁻⁶), meaning that our equilibrium lies very far to the left (i.e. very little decomposition).

What this means for us is that our system will have to undergo very little change (the "x" value) in order to reach equilibrium. As such, we say x is small and can invoke the approximation that:

 $0.824 - 2x \approx 0.824 - 2(0) \approx 0.824$

quilibrium.
ant.

$$K_{p} = \frac{P_{H_{2}}^{2}P_{S_{2}}}{P_{H_{2}S}^{2}}$$
ression.

$$2.2 \times 10^{-6} = \frac{(2x)^{2}(x)}{(0.824 - 2x)^{2}}$$

$$2.2 \times 10^{-6} \approx \frac{(2x)^{2}(x)}{(0.824)^{2}}$$

$$2.2 \times 10^{-6} \approx \frac{4x^{3}}{(0.824)^{2}}$$

$$2.2 \times 10^{-6} = \frac{4x^{3}}{(0.824)^{2}}$$

$$x = 0.0072 \text{ atm} = P_{S_{2}}$$

