CHEMISTRY 165B // SPRING 2020

Consider the decomposition of nitrous oxide:

 $2 N_2 O(g) \rightarrow 2 N_2(g) + O_2(g)$

Given the following initial rates data collected at 321 K, details law for the reaction.

	Experiment	[N ₂ O] ₀ (M)	Initial Rate (M/
	1	0.387	0.00190
• •	2	1.161	0.0171
cermine the rate	3	1.935	0.0476

Consider the decomposition of nitrous oxide:

 $2 N_2 O(g) \rightarrow 2 N_2(g) + O_2(g)$

Determine the value and units for the rate constant k.

Experiment	[N ₂ O] ₀ (M)	Initial Rate (M/
1	0.387	0.00190
2	1.161	0.0171
3	1.935	0.0476

Consider the decomposition of nitrous oxide:

 $2 N_2 O(g) \rightarrow 2 N_2(g) + O_2(g)$

If we start with $[N_2O] = 1.00$ M, how long would it take for this reaction to go to 15% completion? - *answer* –

Consider the decomposition of nitrous oxide:

 $2 N_2 O(g) \rightarrow 2 N_2(g) + O_2(g)$

Which of the following proposed mechanisms is <u>not valid</u>? Justify your choice briefly.

- answer -

$N_2O \rightleftharpoons N_2 + O$	(fast)
$N_2O + O \rightarrow N_2 + O_2$	(slow

I
$$2 N_2 O \rightleftharpoons N_4 O_2$$
 (fast)
 $N_4 O_2 \rightarrow 2 N_2 + O_2$ (slow

III
$$N_2O + N_2O \rightarrow 2 N_2 + O + O$$
 (slow
 $O + O \rightarrow O_2$ (fast)

w) t) w) w)

Hypochlorous acid (HClO) is a weak acid with a $K_a = 2.98 \times 10^{-8}$ at 298 K.

What is the pH of a 100. mL solution of 2.01 M HClO?

Hypochlorous acid (HClO) is a weak acid with a $K_a = 2.98 \times 10^{-8}$ at 298 K. To 100. mL of 2.01 M HCIO we add 0.080 moles of NaOH. What is the pH of the resulting solution? You may assume no change in volume or temperature. - answer -

Hypochlorous acid (HClO) is a weak acid with a $K_a = 2.98 \times 10^{-8}$ at 298 K.

You may assume no change in volume or temperature.

- answer -

How many grams of solid NaClO would need to be added to 100. mL of 2.01 M HClO to produce a solution with a pH = 7.60?

Consider the equilibrium reaction: $Ag^+(aq) + 2 NH_3(aq) \rightleftharpoons [Ag(NH_3)_2]^+(aq)$ If the initial solution contains only 0.10 M $[Ag(NH_3)_2]^+$, what is the equilibrium concentration of NH₃ in solution?

- answer -

 $K_{\rm c} = 1.7 \times 10^7$ (at 298 K)

To a 0.10 M KCl solution, AgNO₃ is added gradually until a precipitate beings to form. If the concentration of [Ag⁺] at the time of precipitate formation is 1.6×10^{-9} M, what is the value of K_{sp} for AgCl?

Do you expect AgCl to be more or less soluble in a solution of pure NH_3 than in a solution of pure water? Justify your answer.

Refer to Practice Problem 3.1.

Consider the gaseous equilibrium: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ At 298 K, the value of K_c for this reaction is 0.060. Write an expression for K_p using K_c at 298K.

Which of the following aqueous salt solutions are acidic? Assume all are 1.0 M.

- (a) NaNO₂
- (b) KCH₃COO
- (c) NH₄Br
- (d) BaCl₂

The following concentration-time data are plotted below for the decomposition of hydrogen peroxide (H_2O_2) at 298 K. 2 H_2O_2 (aq) \rightarrow 2 H_2O (I) + O_2 (g)

What is the order of the reaction with respect to $[H_2O_2]$?

Time (s)	[C ₄ H ₆] (M)		
0	1.00		
120.	0.91	\mathbf{O}_{2}^{2}	
300.	0.78	Н ²	
600.	0.59		
1200.	0.37		Time (a)
1800.	0.22		rime (S)

Which of the following changes would increase the concentration of $[Br_2]$ for the following chemical reaction? 2 Br (g) \rightleftharpoons Br₂ (g) ; ∆H = -244 kJ

(a) Increasing the temperature.

(b) Increasing the total pressure of the system.

(c) Increasing the volume of the container.

Consider the reaction: $A \rightarrow B$

The initial concentration of A is [A]₀ = 0.561 M. You determine the first three successive half-life times to be 483, 483, and 483

seconds. How long will it take for the concentration to decrease to 0.241 M? - answer -

 $2 \text{ NOCl } (g) \rightleftharpoons 2 \text{ NO} (g) + \text{Cl}_2 (g)$ Consider the reaction: Into a 2.0 L container at 35 °C, you place 1.0 mol NO (g) and 1.0 mol Cl₂ (g) and allow the system to reach equilibrium. If the concentration of Cl_2 (g) at equilibrium is 0.252 M, what is the value of K_c for this reaction? - answer -

Consider a solution that is 0.45 M HCN and 0.69 M NaCN, where K_a (HCN) = 6.2 × 10⁻¹⁰ at 298 K.

If 0.25 mol of NaOH is added to 1.0 L of the above solution, what is the pH of the final solution?

Assume the volume does not change.

A 145 mL solution of 1.35 M methylamine (CH₃NH₂, $K_b = 4.4 \times 10^{-4}$) is titrated with 0.250 M HCl.

What is the pH at the equivalence point?