HXAM 2 PRACIICE PROBLEMS

CHEMISTRY 161A // FALL 2019

PRACTICE PROBLEM 1.1

Complete the following chart by calculating the concentration specified in square brackets [] in units of M . - answer -

	Information	[Species]	Concentration (M)
A)	64.7 g LiCl in 250.0 mL water	$[\mathrm{LiCl}]$	6.11 M
B)	$0.200 \mathrm{~mol} \mathrm{CaCl}_{2}$ in 2.00 L water	$\left[\mathrm{Cl}^{-}\right]$	0.200 M
C)	$6.42 \times 10^{-2} \mathrm{mM} \mathrm{KNO}_{3}$	$\left[\mathrm{KNO}_{3}\right]$	$6.42 \times 10^{-5} \mathrm{M}$
D) $0.200 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in 200.0 g water	$\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$	1.00 M	
		$\left[\mathrm{Na}^{+}\right]$	2.00 M
		$\left[\mathrm{CO}_{3}{ }^{2-}\right]$	1.00 M
		$[$ ions $]$	3.00 M
E)	$1.25 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$	$\left[\mathrm{H}^{+}\right]$	3.75 M

PRACTICE PROBLEM 1.1

Complete the following chart by calculating the concentration specified in square brackets [] in units of M.

- answer -

Part (D)
To find the molarity (M) of $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$, I need moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the volume of water in liters:

$$
\begin{aligned}
{\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right] } & =\frac{\# \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{\text { Volume }(\mathrm{L})} \\
& =\frac{0.200 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{200.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
{\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right] } & =1.00 \mathrm{M}
\end{aligned}
$$

REMEMBER
The solution is water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and its density is: $\mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}=\frac{1 \mathrm{~g}}{1 \mathrm{~mL}}=\frac{1 \mathrm{~kg}}{1 \mathrm{~L}}$

To find the concentration of $\left[\mathrm{Na}^{+}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right]$, and [total ions]:

$$
\begin{aligned}
& \frac{1.00 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1.00 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=2.00 \mathrm{M} \mathrm{Na}^{+} \\
& \frac{1.00 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1.00 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Co}_{3}^{2-}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=1.00 \mathrm{M} \mathrm{CO}_{3}^{2-} \\
& \frac{1.00 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1.00 \mathrm{~L}} \times \frac{3 \mathrm{~mol} \mathrm{ions}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=3.00 \mathrm{M} \text { ions }
\end{aligned}
$$

PRACTICE PROBLEM 1.1

Complete the following chart by calculating the concentration specified in square brackets [] in units of M .

- answer -

Part (E)
First, identify that $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a strong acid, which means that it will completely dissociate in water. Moreover, it is a polyprotic (more specifically, a triprotic acid), so it will dissociate into $3 \mathrm{H}^{+}$ions per $\mathrm{H}_{3} \mathrm{PO}_{4}$ unit.

In other words,

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})
$$

To find the concentration of $\left[\mathrm{H}^{+}\right]$:

$$
\frac{1.25 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{1.00 \mathrm{~L}} \times \frac{3 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}=3.75 \mathrm{M} \mathrm{H}^{+}
$$

PRACTICE PROBLEM 1.2

You have 2.50 mL of a 0.559 M solution of Cl^{-}. How much water do you need to add to make a solution that is 116 mM Cl ? - answer -

First, find how many moles of Cl^{-}ions you have in 2.50 mL of the $0.559 \mathrm{M} \mathrm{Cl}^{-}$solution:

$$
\begin{aligned}
{\left[\mathrm{Cl}^{-}\right] } & =\frac{\# \mathrm{~mol} \mathrm{Cl}^{-}}{\operatorname{Volume}(\mathrm{L})} \\
0.559 \mathrm{M} & =\frac{\mathrm{x} \mathrm{~mol} \mathrm{Cl}^{-}}{2.50 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
\mathrm{x} & =0.00139_{8} \mathrm{~mol} \mathrm{Cl}^{-}
\end{aligned}
$$

Now, figure out the total volume of a $116 \mathrm{mM} \mathrm{Cl}^{-}$solution containing this many moles of Cl^{-}ions:

$$
\begin{aligned}
{\left[\mathrm{Cl}^{-}\right] } & =\frac{\# \mathrm{~mol} \mathrm{Cl}^{-}}{\text {Volume (L) }} \\
116 \mathrm{mM} \times \frac{1 \mathrm{M}}{1000 \mathrm{mM}} & =\frac{0.00139_{8} \mathrm{~mol} \mathrm{Cl}^{-}}{\mathrm{V}} \\
\mathrm{~V} & =0.0120_{5} \mathrm{~L}
\end{aligned}
$$

ALTERNATIVE SOLUTION:

You can use the following equation:

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

$(0.559 \mathrm{M})(2.50 \mathrm{~mL})=(0.116 \mathrm{M}) \mathrm{V}_{2}$ $\mathrm{V}_{2}=12.0_{5} \mathrm{~mL}$
But you still have to subtract at the end to find the volume of water added to the 2.50 mL of the original solution.
\therefore This is total volume!
So subtract to find the amount of water added: $\mathrm{V}_{\text {added }}=12.0_{5} \mathrm{~mL}-2.50 \mathrm{~mL}=9.6 \mathrm{~mL}$ water added.

PRACTICE PROBLEM 1.3

Which of the following has the greatest concentration of total dissolved ions?
0.25 M NaBr
$0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
$0.25 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$

- answer -

Firstly, these are all soluble salts.

We can then represent the dissociation of each salt into its ions:

$$
\begin{aligned}
& 1 \text { molecule } \mathrm{NaBr}=1 \mathrm{Na}^{+}+1 \mathrm{Br}^{-} \\
& 1 \mathrm{~mol} \mathrm{NaBr}=1 \mathrm{~mol} \mathrm{Na}^{+}+1 \mathrm{~mol} \mathrm{Br}^{-}
\end{aligned}
$$

1 molecule $\mathrm{Na}_{2} \mathrm{SO}_{4}=2 \mathrm{Na}^{+}+1 \mathrm{SO}_{4}{ }^{2-}$
$1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}=2 \mathrm{~mol} \mathrm{Na}+1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$

Understand that the concentration of ions would be:

$$
1 \mathrm{NaBr}: 2 \text { ions }
$$

$$
\text { [ions] }=2 \times 0.25 \mathrm{M}=0.50 \mathrm{M}
$$

$1 \mathrm{Na}_{2} \mathrm{SO}_{4}: 3$ ions
[ions] $=3 \times 0.25 \mathrm{M}=0.75 \mathrm{M}$

1 molecule $\mathrm{Na}_{3} \mathrm{PO}_{4}=3 \mathrm{Na}^{+}+1 \mathrm{PO}_{4}{ }^{3-}$ $1 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}=3 \mathrm{~mol} \mathrm{Na}+1 \mathrm{~mol} \mathrm{PO}_{4}{ }^{3-}$

$1 \mathrm{Na}_{3} \mathrm{PO}_{4}: 4$ ions

$$
\text { [ions] }=4 \times 0.25 \mathrm{M}=1.00 \mathrm{M}
$$

PRACTICE PROBLEM 2.1

For each reaction, write out the balanced molecular, overall/total/complete ionic, and net ionic equations:
(a) An iron(II) sulfate solution is mixed with a potassium hydroxide solution.
(b) A lead(II) nitrate solution is mixed with a solution of potassium bromide.
(c) Aqueous nitric acid is mixed into a solution of sodium hydroxide.

- answer -
(a) An iron(II) sulfate solution is mixed with a potassium hydroxide solution.

$$
\begin{aligned}
& \mathrm{FeSO}_{4}(a q)+2 \mathrm{KOH}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{K}_{2} \mathrm{SO}_{4}(a q) \\
& \mathrm{Fe}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q)+2 \mathrm{~K}^{f}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(s)+2 \mathrm{~K}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \\
& \mathrm{Fe}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(s)
\end{aligned}
$$

(b) A lead(II) nitrate solution is mixed with a solution of potassium bromide.

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq}) \\
& \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{~K}^{千}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{2}(\mathrm{~s})+2 \mathrm{~K}^{千}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \\
& \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{2}(\mathrm{~s})
\end{aligned}
$$

molecular equation overall ionic equation net ionic equation
molecular equation overall ionic equation net ionic equation
(c) Aqueous nitric acid is mixed into a solution of sodium hydroxide.

$$
\begin{aligned}
& \mathrm{HNO}_{3}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{NaNO}_{3}(a q) \\
& \mathrm{H}^{+}(a q)+\mathrm{N} \mathrm{\sigma}_{3}^{-}(a q)+\mathrm{Na}^{-}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{Na}^{4}(a q)+\mathrm{NO}_{3}^{-}(a q) \\
& \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)
\end{aligned}
$$

overall ionic equation net ionic equation

PRACTICE PROBLEM 2.2

You mix a 1.00 L of a 0.174 M solution of lead(II) nitrate with 1.00 L of a 0.130 M solution of potassium bromide. What mass (in grams) of solid precipitate will be formed?

- anszer -

From the previous slide, we know the following balanced chemical equations apply in this precipitation reaction:

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq}) \\
& \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{2}(\mathrm{~s})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \\
& \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{2}(\mathrm{~s})
\end{aligned}
$$

molecular equation overall ionic equation net ionic equation

It's easiest to apply the molecular equation in stoichiometry of precipitation reactions. First, determine the number of moles of the starting reactants to determine which is the limiting reactant:

$$
\begin{array}{rlrl}
0.174 \mathrm{M} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} & =\frac{x \mathrm{~mol}}{1.00 \mathrm{~L}} & 0.130 \mathrm{M} \mathrm{KBr} & =\frac{y \mathrm{~mol}}{1.00 \mathrm{~L}} \\
\mathrm{x} & =0.174 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} & y & =0.130 \mathrm{~mol} \mathrm{KBr}
\end{array}
$$

\therefore The limiting reactant is KBr because we need a 1:2 mole ratio for $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}: \mathrm{KBr}$, but have a 1:0.747 mole ratio.

Now, figure out how much barium carbonate you can make from this amount of limiting reactant:

$$
0.130 \mathrm{~mol} \mathrm{KBr} \times \frac{1 \mathrm{~mol} \mathrm{PbBr}_{2}}{2 \mathrm{~mol} \mathrm{KBr}} \times \frac{367.0 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{PbBr}_{2}}=23.9 \mathrm{~g} \mathrm{PbBr}_{2}
$$

PRACTICE PROBLEM 2.3

What volume of a 0.500 M NaOH solution would be required to completely neutralize 40.0 mL of $0.400 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

- answer -

We can write the following balanced chemical equations for the neutralization reaction:

$$
\begin{aligned}
& 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \\
& 2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{SO}_{4}^{2-}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(l) \\
& 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

It's easiest to apply the molecular equation in stoichiometry of neutralization reactions.
First, determine the number of moles of the $\mathrm{H}_{2} \mathrm{SO}_{4}$:

$$
\begin{aligned}
0.400 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} & =\frac{\mathrm{x} \mathrm{~mol}}{0.0400 \mathrm{~L}} \\
\mathrm{x} & =0.0160 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

To neutralize all of the $\mathrm{H}_{2} \mathrm{SO}_{4}$, we need an twice the amount NaOH :

$$
0.0160 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=0.0320 \mathrm{~mol} \mathrm{NaOH}
$$

Now, figure out what volume of 0.500 M NaOH solution gives this many moles:

$$
0.500 \mathrm{M} \mathrm{NaOH}=\frac{0.0320 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~V}}
$$

PRACTICE PROBLEM 3.1

Give the oxidation state/number for each element in each flask.

- answer -

$$
S=+6
$$

$C=+4$
$F=0$

$$
\begin{aligned}
& N=+2 \\
& O=-2
\end{aligned}
$$

PRACTICE PROBLEM 3.2

Balance the following redox equation using the half-reactions method in aqueous acidic medium.

$$
\mathrm{Mn}^{2+}(a q)+\mathrm{BiO}_{3}^{-}(a q) \rightarrow \mathrm{MnO}_{4}^{-}(a q)+\mathrm{Bi}^{3+}(a q)
$$

- answer -

We can start by assigning the oxidation states, so that we can determine the corresponding reduction and oxidation half-reactions.

$$
\begin{array}{rrr}
\mathrm{Mn}^{2+}: & +2 & \mathrm{Mn} \text { in } \mathrm{MnO}_{4}^{-}: \\
{\mathrm{Bi} \text { in } \mathrm{BiO}_{3}^{-}}^{-}: & +5 & \mathrm{Bi}^{3+}: \\
\mathrm{O} \text { in } \mathrm{BiO}_{3}^{-} & +3 \\
\hline & -2 & \mathrm{O} \text { in } \mathrm{MnO}_{4}^{-}:
\end{array}
$$

Now, we can balance the redox equation using the half-reactions method through the following steps.

PRACTICE PROBLEM 4.1

In a calorimeter at constant pressure and $25.2^{\circ} \mathrm{C}$, you mix solutions of potassium carbonate and barium nitrate, which releases 196 kJ of heat. If the total volume of the solution is 1.20 L , what is the final temperature of the solution after the reaction is complete?

$$
\text { Molar heat capacity } \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=75.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

- answer -

Understand the heat of the reaction occurring is absorbed by the surrounding solution (the water), so

$$
q_{\mathrm{water}}=-\Delta H_{\mathrm{rxn}}=196 \mathrm{~kJ}
$$

Now, figure out what happens to the water if we were to heat it with 196 kJ of heat:

$$
\begin{aligned}
q_{\text {water }} & =\mathrm{nc}_{\mathrm{P}} \Delta \mathrm{~T} \\
196 \mathrm{~kJ} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}} & =\left(1.20 \mathrm{~L} \mathrm{H}_{2} \mathrm{O} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(75.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}}\right)\left(\mathrm{T}_{\mathrm{f}}-25.2^{\circ} \mathrm{C}\right) \\
\mathrm{T}_{\mathrm{f}} & =64.3^{\circ} \mathrm{C}
\end{aligned}
$$

PRACTICE PROBLEM 4.2

Determine the standard heat of formation $\left(\Delta H_{f}^{0}\right)$ of $\mathrm{CO}_{2}(\mathrm{~g})$ using the following thermochemical data.

$$
\begin{array}{cl}
\mathrm{C}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g}) & \Delta H_{\mathrm{rxn}}=-111 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{\mathrm{rxn}}=-283 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

- answer -

The standard heat of formation $\left(\Delta H_{\mathrm{f}}^{\mathrm{o}}\right)$ of $\mathrm{CO}_{2}(\mathrm{~g})$ can be expressed as the following reaction:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad ; \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{CO}_{2}(g)\right]=?
$$

Since enthalpy is a state function, if we add up these two reactions (algebraically) to get the formation reaction of interest, then we can also get the heat of formation through the same algebraic manipulations.

Let's simply add reactions (1) and (2) to get reaction (3) below:

$$
\begin{array}{rlll}
1 \mathrm{C}(\mathrm{~s}) & +1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow 1 \mathrm{CO}(\mathrm{~g}) & \Delta H_{\mathrm{rxn}}=-111 \mathrm{~kJ} / \mathrm{mol} \\
+1 \mathrm{CO}(\mathrm{~g}) & +1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow 1 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{\mathrm{rxn}}=-283 \mathrm{~kJ} / \mathrm{mol} \\
\hline 1 \mathrm{C}(\mathrm{~s}) & +1 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow 1 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{\mathrm{f}}^{\mathrm{o}}=-394 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

PRACTICE PROBLEM 5.1

Consider the combustion of ammonia in air: $\quad 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
Calculate the heat of the reaction ($\Delta H_{\mathrm{rxn}}^{\mathrm{o}}$) using the following standard heats of formations.

$$
\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=-46.1 \mathrm{~kJ} / \mathrm{mol} \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]=-241.8 \mathrm{~kJ} / \mathrm{mol} \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}[\mathrm{NO}(\mathrm{~g})]=90.3 \mathrm{~kJ} / \mathrm{mol}
$$

- answer -

The heat of the reaction ($\left.\Delta H_{\mathrm{rxn}}^{\mathrm{o}}\right)$ can be determined using the following expression:

$$
\Delta H_{\mathrm{rxn}}^{\mathrm{o}}=\sum \mathrm{n}_{\text {products }} \Delta H_{\mathrm{f}, \text { products }}^{\mathrm{o}}-\sum \mathrm{n}_{\text {reactants }} \Delta H_{\mathrm{f}, \text { reactants }}^{\mathrm{o}}
$$

Plugging in the values above, we get:

$$
\begin{aligned}
\Delta H_{\mathrm{rxn}}^{\mathrm{o}} & =\mathrm{n}_{\mathrm{NO}} \Delta H_{\mathrm{f}}^{\mathrm{o}}[\mathrm{NO}(g)]+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]-\mathrm{n}_{\mathrm{NH}_{3}} \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{NH}_{3}(g)\right]-\mathrm{n}_{\mathrm{O}_{2}} \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{O}_{2}(g)\right] \\
& =4 \mathrm{~mol} \times 90.3 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+6 \mathrm{~mol} \times\left(-241.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-4 \operatorname{mol} \times\left(-46.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-5 \mathrm{~mol} \times 0 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& =361.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}-1450.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+184.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta H_{\mathrm{rxn}}^{\mathrm{o}} & =-905.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

PRACTICE PROBLEM 5.2

Consider the combustion of ammonia in air: $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
4.00 moles of NH_{3} are combusted in a 10.0 L water bath and the temperature of the water rises by $28.0^{\circ} \mathrm{C}$. Calculate the heat of the reaction ($\left.\Delta H_{\mathrm{rxn}}^{\mathrm{o}}\right)$ from the calorimetry data if the molar heat capacity $\mathrm{H}_{2} \mathrm{O}(I)$ is $75.3 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$.

- answer -

The heat of the reaction $\left(\Delta H_{\mathrm{rxn}}^{\mathrm{o}}\right)$ can be determined by figuring out how much heat (q) the water absorbed based on calorimetry:

$$
q_{\text {water }}=-\Delta H_{\mathrm{rxn}}^{0}
$$

Therefore,

$$
\left.\left.\begin{array}{rl}
\Delta H_{\mathrm{rxn}}^{\mathrm{o}} & =-q_{\text {water }} \\
& =-\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} \mathrm{c}_{\mathrm{P}} \Delta \mathrm{~T} \\
& =-\left(10.0 \mathrm{~L} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathrm{H}}{2} \mathrm{O}\right. \\
18.02 \mathrm{~g}
\end{array}\right)\left(75.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(28.0 \mathrm{~K})\right)
$$

PRACTICE PROBLEM 5.3

Consider the combustion of ammonia in air:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the heat of the reaction $\left(\Delta H_{\mathrm{rxn}}^{\mathrm{o}}\right)$ using Hess's Law and following thermochemical data for related reactions. - answer -

$$
\begin{array}{cl}
2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) & \Delta H_{\mathrm{rxn}}=+92.2 \mathrm{~kJ} / \mathrm{mol} \\
2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) & \Delta H_{\mathrm{rxn}}=-180.6 \mathrm{~kJ} / \mathrm{mol} \\
2 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) & \Delta H_{\mathrm{rxn}}=+571.6 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

We can manipulate the above three equations to formulate our reaction of interest.

$$
\begin{aligned}
& 2 \times\left[2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})\right] 2 \times[+92.2 \mathrm{~kJ} / \mathrm{mol}] \\
& 2 \times\left[\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) \quad\right]-2 \times[-180.6 \mathrm{~kJ} / \mathrm{mol}] \\
& \begin{aligned}
3 \times\left[\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \mathrm{l}\right. \\
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
\end{aligned}
$$

Therefore, the heat of the reaction is:

$$
\begin{aligned}
\Delta H_{\mathrm{rxn}}^{\mathrm{o}} & =2 \times\left(+92.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-2 \times\left(-180.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-3 \times\left(+571.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right) \\
& =(184.4+361.2-1714.8) \mathrm{kJ} / \mathrm{mol} \\
\Delta H_{\mathrm{rxn}}^{\mathrm{o}} & =-1169.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

PRACTICE PROBLEM 6.1

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb? - ansteer -

Start by recognizing that the contents of the bulb are at STP (1 atm and $0^{\circ} \mathrm{C}$).

This means that 1 mole of the gas will occupy 22.4 L of volume.

We can use the following dimensional analysis to find the total number of moles:

$$
500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=0.02232 \mathrm{~mol} \text { gas }
$$

Alternatively, use the Ideal Gas Law:

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{n} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.0 \mathrm{~atm})\left(500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(273.15 \mathrm{~K})} \\
\mathrm{n} & =0.02232 \mathrm{~mol} \mathrm{gas}
\end{aligned}
$$

PRACTICE PROBLEM 6.2

A 5.00 L rigid container is initially filled with 0.2044 mol of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$ gas at 1.00 atm and $25.0^{\circ} \mathrm{C}$. What is the pressure inside the container if the temperature is lowered to $5.0^{\circ} \mathrm{C}$?

- anster -

Notice that the number of moles (n) and the volume (V) of the container are constant, and we are only changing the pressure (P) and temperature (T).

Therefore, we can set up the following gas relationship to determine the new pressure $\left(\mathrm{P}_{2}\right)$:

$$
\begin{aligned}
\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}} & =\frac{\mathrm{P}_{2}}{T_{2}} \\
\mathrm{P}_{2} & =\frac{\mathrm{P}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}} \\
& =\frac{(1.00 \mathrm{~atm})\left(5.0+273.1_{5}\right) \mathrm{K}}{\left(25.0+273.1_{5}\right) \mathrm{K}} \\
\mathrm{P}_{2} & =0.933 \mathrm{~atm}
\end{aligned}
$$

PRACTICE PROBLEM 7.1

Which of the following 1.00 L containers has the largest number of moles of gas?

- answer -

D

1.0 atm NO $\{30.0 \mathrm{~g} / \mathrm{mol}\}$ 200 K

$$
\mathrm{n}_{\mathrm{SF}_{6}}=0.010 \mathrm{~mol} \mathrm{SF}_{6}
$$

$$
\mathrm{n}_{\mathrm{CO}_{2}}=0.5 \mathrm{~mol} \mathrm{CO}_{2}
$$

$$
\mathrm{n}_{\mathrm{F}_{2}}=\frac{(3.0 \mathrm{~atm})(1.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(273 \mathrm{~K})}
$$

$$
\mathrm{n}_{\mathrm{NO}}=\frac{(1.0 \mathrm{~atm})(1.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(200 \mathrm{~K})}
$$

$$
=0.061 \mathrm{~mol} \mathrm{NO}
$$

To convert each of these mole amounts, we would do the following ($\mathrm{N}_{\mathrm{A}}=$ Avogadro's Number):

$$
\mathrm{n}_{\mathrm{X}} \times \frac{\mathrm{N}_{\mathrm{A}} \text { molecules }}{1 \mathrm{~mol}} \times \frac{\mathrm{y} \text { atoms }}{1 \text { molecule }}=\left(\mathrm{n}_{\mathrm{X}} \cdot \mathrm{~N}_{\mathrm{A}} \cdot \mathrm{y}\right) \text { atoms }
$$

So, Flask B has the largest number of atoms (largest $n_{X} \cdot y$).

PRACTICE PROBLEM 7.2

Which of the following 1.00 L containers has the greatest pressure?

- answer -

$$
\begin{aligned}
\mathrm{P}_{\mathrm{SF}_{6}} & =\frac{(0.010 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300 \mathrm{~K})}{1.0 \mathrm{~L}} \mathrm{P}_{\mathrm{CO}_{2}} \\
=0.25 \mathrm{~atm} & =\frac{(0.5 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(600 \mathrm{~K})}{1.0 \mathrm{~L}} \mathrm{P}_{\mathrm{F}_{2}}=3.0 \mathrm{~atm} \\
& =25 \mathrm{~atm}
\end{aligned}
$$

So, Flask B has the greatest pressure.

PRACTICE PROBLEM 7.3

In which container would effusion of the gas the slowest?

- ans\%er -

$$
\frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{MM}_{\mathrm{B}}}=\frac{600}{44.0}=13.6
$$

$$
\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{MM}_{\mathrm{C}}}=\frac{273}{38.0}=7.2
$$

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{MM}}} \Rightarrow v_{\mathrm{rms}} \propto \frac{\mathrm{~T}}{\mathrm{MM}}
$$

The larger the $v_{r m s}$, the slower the rate of diffusion.
So, Flask A has the slowest rate of diffusion.

PRACTICE PROBLEM 8

Consider the diagram to the right, where three containers of gas are connected by stopcocks. What is the partial pressure of each gas if the stopcocks are opened?

Assume no reaction between the gases.

- answer -

Solve for the number of moles using the pressures of each gas using the ideal gas law.

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} & \mathrm{n}_{\mathrm{H}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(2.13 \mathrm{~atm})(1.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} & & =\frac{(0.861 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{CO}_{2}} & =0.130_{7} \mathrm{~mol} & \mathrm{n}_{\mathrm{N}_{2}} & =0.0352_{1} \mathrm{~mol}
\end{aligned}
$$

If we open the stopcocks, the total volume changes to 4.50 L . Now solve for new pressures:
$\mathrm{P}_{\mathrm{CO}_{2}}=\frac{\mathrm{nRT}}{\mathrm{V}}$
(298 K)

$$
\mathrm{P}_{\mathrm{CO}_{2}}=0.710 \mathrm{~atm}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{H}_{2}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.0352_{1} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{H}_{2}} & =0.191 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{Ar}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.0940_{5} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{Ar}} & =0.511 \mathrm{~atm}
\end{aligned}
$$

PRACTICE PROBLEM 9

You react 2.00 L of F_{2} gas (at $20.0^{\circ} \mathrm{C}$ and 1.00 atm) with 1.50 L of H_{2} gas (at $-20.0^{\circ} \mathrm{C}$ and 1.50 atm), which react to form gaseous HF (molar mass $=20.01 \mathrm{~g} / \mathrm{mol}$). What is the mass of HF gas that forms?

- anstier -

Start by writing a balanced chemical equation:

$$
\mathrm{F}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{~g})
$$

Determine the number of moles of each reactant:

$$
\mathrm{n}_{\mathrm{F}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.00 \mathrm{~atm})(2.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(293.1_{5} \mathrm{~K}\right)}=0.0831_{4} \mathrm{~mol}_{2} \quad \mathrm{n}_{\mathrm{H}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.50 \mathrm{~atm})(1.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(253.1_{5} \mathrm{~K}\right)}=0.108_{3} \mathrm{~mol} \mathrm{H}_{2}
$$

Determine that the limiting reactant is F_{2} gas using one of the two methods below:

$$
\begin{array}{cc}
0.0831_{4} \mathrm{~mol} \mathrm{~F}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~F}_{2}}=0.0831_{4} \mathrm{~mol} \mathrm{H}_{2} & 0.0831_{4} \mathrm{~mol} \mathrm{~F}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HF}}{1 \mathrm{~mol} \mathrm{~F}_{2}}=0.166_{3} \mathrm{~mol} \mathrm{HF} \\
\rightarrow \text { We have more } \mathrm{H}_{2} \text { than we need. } & 0.108_{3} \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HF}}{1 \mathrm{~mol} \mathrm{H}_{2}}=0.216_{6} \mathrm{~mol} \mathrm{HF} \\
& \rightarrow \mathrm{~F}_{2} \text { produces less } \mathrm{HF} \text { product. }
\end{array}
$$

Now determine how much HF gas can be produced from this amount of F_{2} gas:

$$
0.0831_{4} \mathrm{~mol} \mathrm{~F}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HF}}{1 \mathrm{~mol} \mathrm{~F}_{2}} \times \frac{20.01 \mathrm{~g} \mathrm{HF}}{1 \mathrm{~mol} \mathrm{HF}}=3.33 \mathrm{~g} \mathrm{HF}
$$

