EXAM 3 PRACTICE SOLUTIONS

CHEMISTRY 161A // FALL 2019

Which photon has a greater energy?

Photon A with v = 2.45 GHz

- answer -

$$E = \frac{hc}{\lambda} = h$$

Comparing Energies (E)	Comparing Wavelengths (λ)	Comparing Frequencies (v)
$E_{A} = h\nu_{A}$ = (6.626 × 10 ⁻³⁴ J · s)(2.45 × 10 ⁹ s ⁻¹) $E_{A} = 1.62 × 10^{-24} J$	$c = \lambda_A \nu_A$ 3.00 × 10 ⁸ $\frac{m}{s} = \lambda_A \times (2.45 \times 10^9 \text{ s}^{-1})$ $\lambda_A = 0.122 \text{ m}$	$v_{\rm A} = 2.45 \times 10^9 {\rm s}^{-1}$
$E_{\rm B} = \frac{\rm hc}{\lambda_{\rm B}}$ = $\frac{(6.626 \times 10^{-34} \text{J} \cdot \text{s}) \left(3.00 \times 10^8 \frac{\text{m}}{\text{s}}\right)}{965 \times 10^{-9} \text{m}}$	$\lambda_{\rm B}=965\times 10^{-9}~{\rm m}$	$c = \lambda_{B}\nu_{B}$ 3.00 × 10 ⁸ $\frac{m}{s} = (965 \times 10^{-9} \text{ m}) \times \nu_{B}$ $\nu_{B} = 3.11 \times 10^{14} \text{ s}^{-1}$
$E_{\rm B} = 2.06 \times 10^{-19} \text{J}$ Photon B has greater energy.	Photon B has a shorter wavelength; thus, photon B has greater energy.	Photon B has a larger frequency and a shorter wavelength; thus, photon B has greater energy.

Photon B with λ = 965 nm

There are three ways you can solve this problem since we can relate energy (E), wavelength (λ), and frequency (v) via:

 $= h\nu$; where $c = \lambda v$

Calculate the frequencies (in Hz or s^{-1}) associated with the following four electron transitions in the hydrogen atom.

- answer -

For electron transitions in the hydrogen atom, we can apply the Rydberg equation to calculate the wavelengths.

		$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$
	Electron Transition	Wavelengths
(a)	$n = 5 \rightarrow n = 4$	$\frac{1}{\lambda_{5\to4}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{4^2} - \frac{1}{5^2}\right) = 2$ $\lambda_{5\to4} = 4.04_0 \times 10^{-6} \text{ m}$
(b)	$n = 4 \rightarrow n = 3$	$\frac{1}{\lambda_{4\to3}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{3^2} - \frac{1}{4^2}\right) = 5$ $\lambda_{4\to3} = 1.87_0 \times 10^{-6} \text{ m}$
(c)	$n = 3 \rightarrow n = 2$	$\frac{1}{\lambda_{3\to 2}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{2^2} - \frac{1}{3^2}\right) = 1$ $\lambda_{3\to 2} = 6.54_5 \times 10^{-7} \text{ m}$
(d)	$n = 2 \rightarrow n = 1$	$\frac{1}{\lambda_{2\to 1}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{1^2} - \frac{1}{2^2}\right) = 8$ $\lambda_{2\to 1} = 1.21_2 \times 10^{-7} \text{ m}$

Calculate the wavelength of radiation required for the following four absorptions in the hydrogen atom. - answer -

We can still apply the Rydberg equation to calculate the wavelengths, but this corresponds to *absorptions* now, not emissions. $\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad ; \quad R_{\rm H} = 1.10 \times 10^7 \frac{1}{\rm m}$ $= 8.25_0 \times 10^6 \frac{1}{m}$ $=9.77_8 \times 10^6 \frac{1}{m}$ *n* = 3 Energy of Need more transitions energy to excite energy (spacings) get to higher *n* = 2 smaller as higher excited states. transitions occur. $= 1.03_1 \times 10^7 \frac{1}{10}$ -λ $= 1.52_8 \times 10^6 \frac{1}{m}$ n = 1

	Electron Transition	Wavelengths
(a)	$n = 1 \rightarrow n = 2$	$\frac{1}{\lambda_{2\to 1}} = \left[1.10 \times 10^7 \frac{1}{m} \right] \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = \lambda_{2\to 1} = 1.21 \times 10^{-7} \text{ m}$
(b)	$n = 1 \rightarrow n = 3$	$\frac{1}{\lambda_{3\to 1}} = \left[1.10 \times 10^7 \frac{1}{m} \right] \left(\frac{1}{1^2} - \frac{1}{3^2} \right) = \lambda_{3\to 1} = 1.02 \times 10^{-7} \text{ m}$
(c)	$n = 1 \rightarrow n = 4$	$\frac{1}{\lambda_{4\to 1}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{1^2} - \frac{1}{4^2}\right) = \lambda_{4\to 1} = 9.70 \times 10^{-8} \text{ m}$
(d)	$n = 2 \rightarrow n = 3$	$\frac{1}{\lambda_{3\to 2}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \lambda_{3\to 2} = 6.55 \times 10^{-7} \text{ m}$

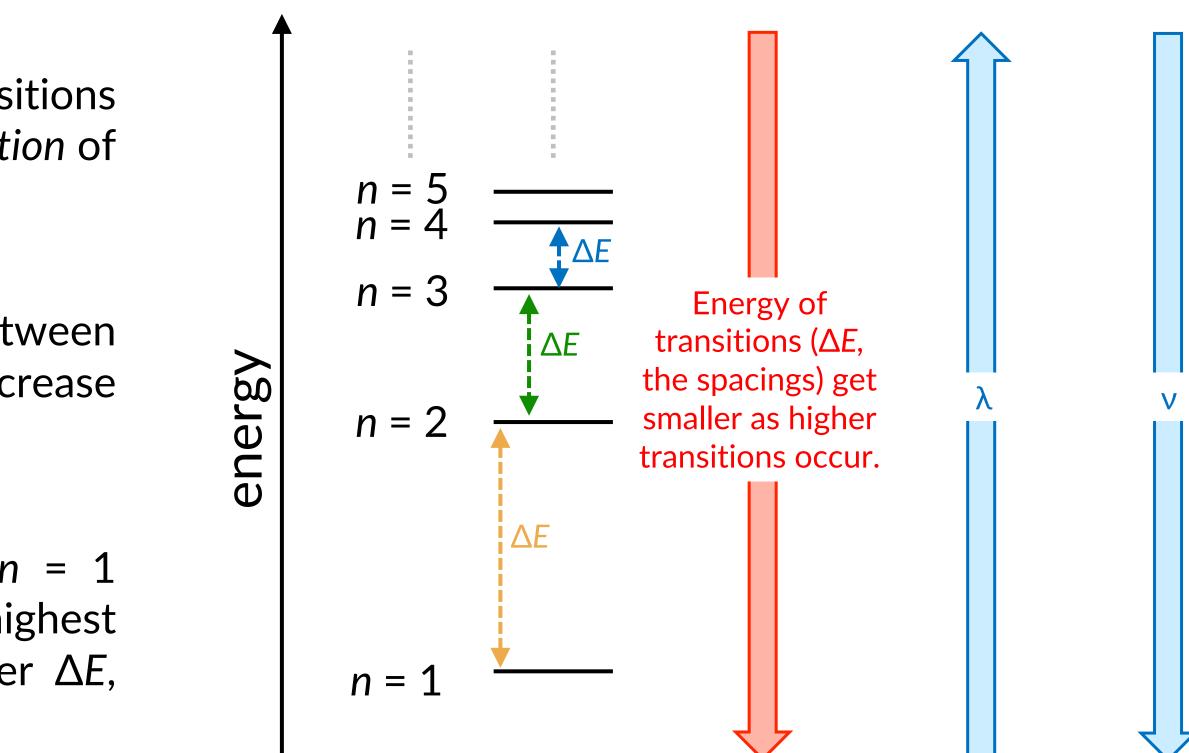
Which of the following electron transitions in the hydrogen atom results in the emission of light with the longest wavelength?

(a) $n = 4 \rightarrow n = 3$ (b) $n = 1 \rightarrow n = 2$

- answer -

This problem should not require any calculations—even though you will get the right answer, it will take you longer to do.

First, eliminate choices B and C since these are both transitions from lower to higher excited states, which require the *absorption* of light.


Second, you need to understand that the spacing (ΔE) between adjacent states gets smaller and smaller as the values of *n* increase (i.e. higher excited states).

The *largest* energy spacing will occur for the $n = 2 \rightarrow n = 1$ transition, which results in the shortest wavelength and highest frequency of light. Every successive emission has a smaller ΔE , longer λ , and higher v.

$$|\Delta E| = \frac{hc}{\lambda} = hv$$

So, the answer is (a).

(c)
$$n = 1 \rightarrow n = 6$$
 (d) $n = 3 \rightarrow n = 2$

What are the possible values of m_e if n = 4?

- answer -

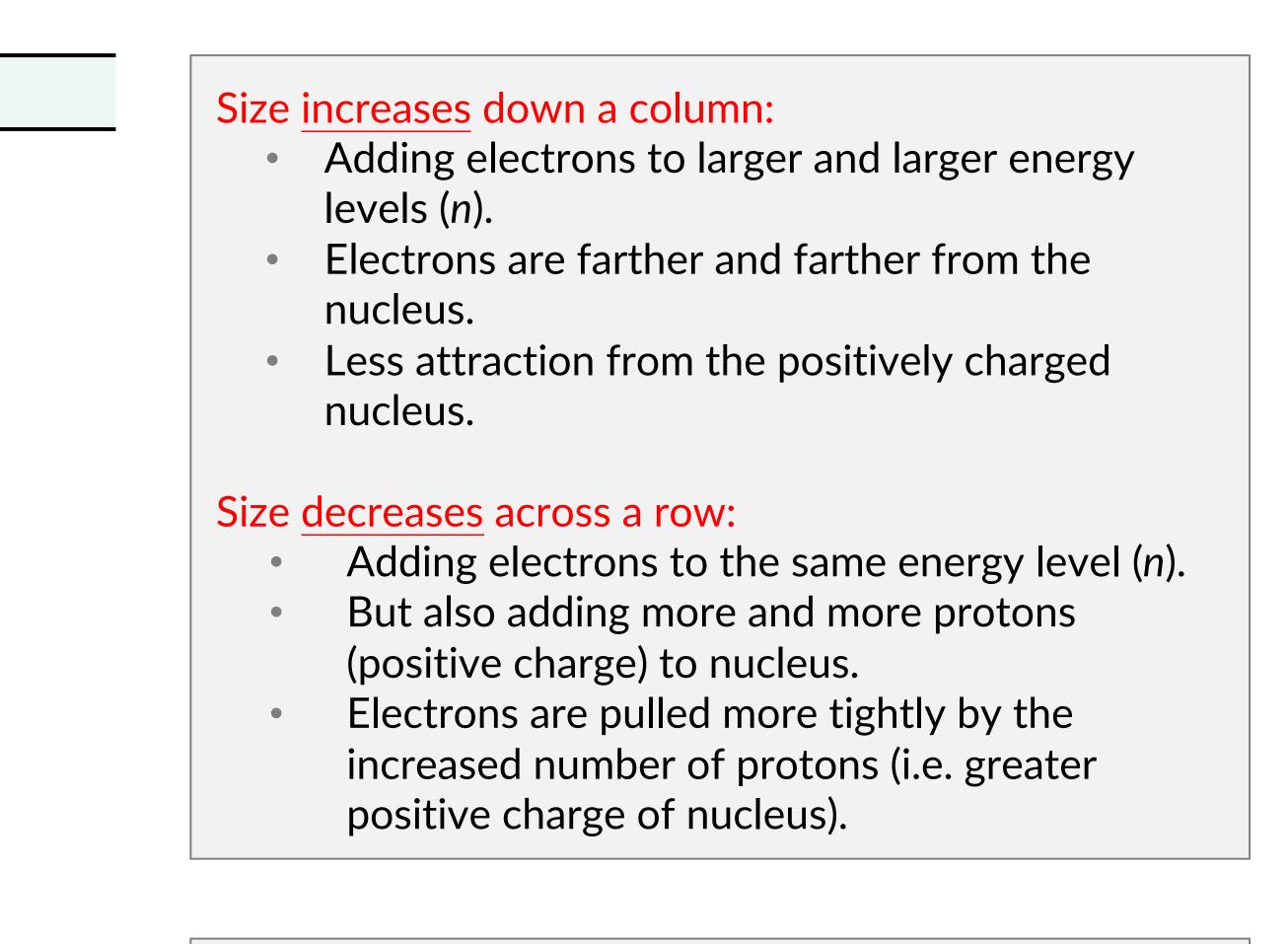
Remember the general, ordered scheme for assigning/generatinumbers:

- 1. Start with *n*, the principal quantum number.
- 2. Then assign ℓ , the angular momentum quantum numbers. The values of ℓ range from 0 to (n - 1) in integers. The value of ℓ determines the orbital shape (s, p, d, or
- 3. Next assign m_e , which is the magnetic quantum number m_e can take on integer values ranging from $-\ell$ to $+\ell$. The number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible m_e values determines how magnetic quantum number of possible quantum
- 4. Finally, assign m_s , the spin quantum number. m_s can only take on two values: $+\frac{1}{2}$ and $-\frac{1}{2}$. This tells us that only two electrons can occupy an or

-				
ting quantum	n	$\Longrightarrow e$	m _e 🛁	> m _s
_	4	0 (s)	0 - 1	+½ or -½
nber.		1 (p)	$\begin{pmatrix} -1 \\ 0 \end{pmatrix} > 3$	+½ or -½ +½ or -½
IDEI.			+1	+½ or -½
or f).		2 (d)	$ \begin{array}{c} -2 \\ -1 \\ 0 \end{array} $	+½ or -½ +½ or -½ +½ or -½
ber. ?.			+1 +2	$+\frac{1}{2}$ or $-\frac{1}{2}$ $+\frac{1}{2}$ or $-\frac{1}{2}$ $+\frac{1}{2}$ or $-\frac{1}{2}$
nany orbitals exist.		3 (f)	-3 -2 -1 0 7	+½ or -½ +½ or -½ +½ or -½ +½ or -½ +½ or -½
orbital.			+1 +2 +3	+½ or -½ +½ or -½ +½ or -½

Which of the following sets of quantum numbers is(are) <u>not</u> allowed?

- answer -

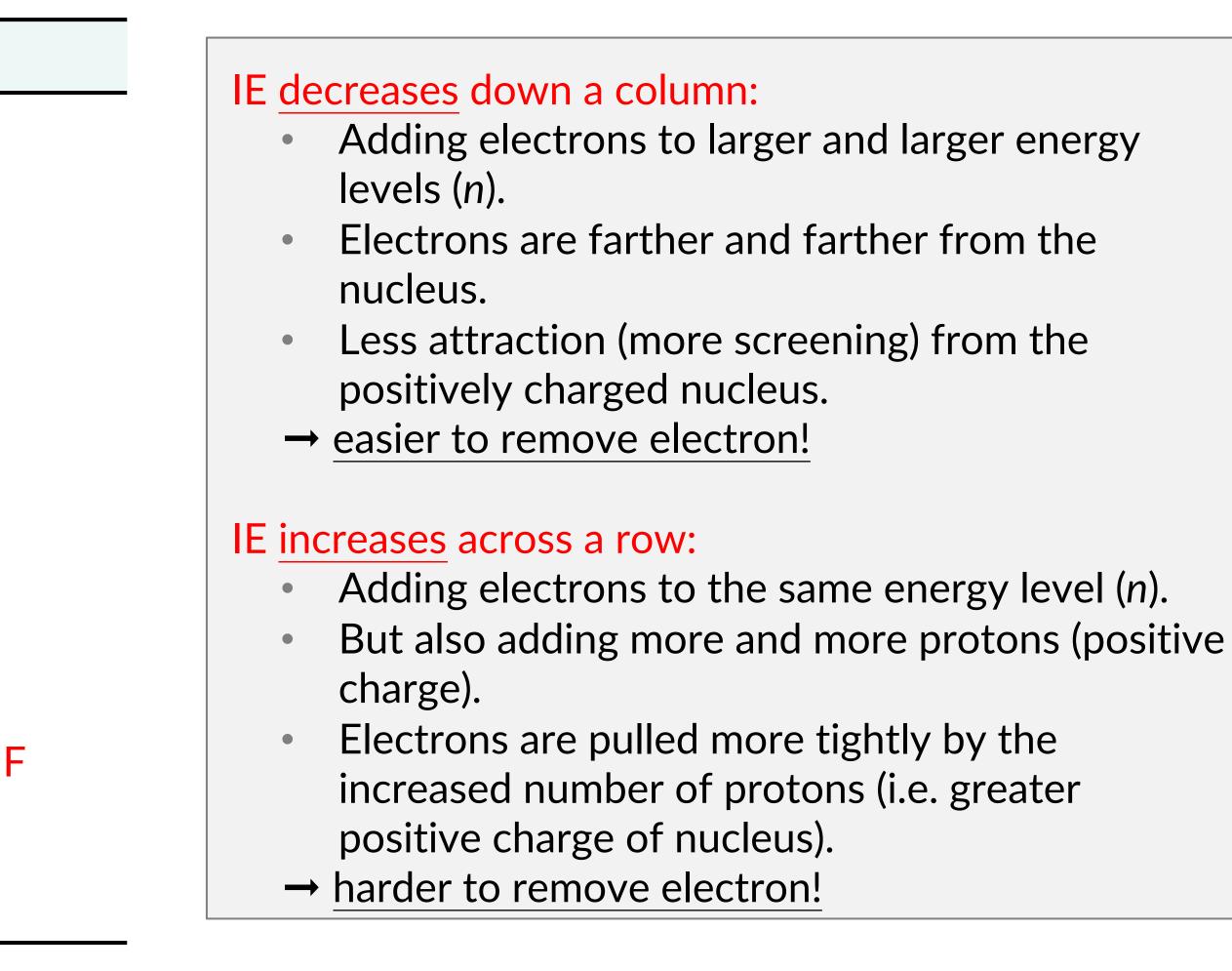

	Set I	Set II	Set III	Set IV
	n = 1	n = 3	n = 1	n = 2
	$rightarrow \ell = 2$	$\ell = 0$	$\ell = 0$	$\ell = 1$
	$m_e = 0$	$m_e = 0$	$\longrightarrow m_e = 1$	$\implies m_e = 2$
	$m_{\rm s} = +\frac{1}{2}$	$m_{\rm s} = -\frac{1}{2}$	$m_{\rm s} = -\frac{1}{2}$	$m_{\rm s} = +\frac{1}{2}$
			ſ	ſ
For n	= 1, the only possible		For $n = 1$, the only possible	For $n = 2$, the possible
	value of ℓ is 0.		value of ℓ is 0.	values of ℓ are 0 and 1.
Th	erefore, Set I is <mark>not</mark>		But, for ℓ = 0, the only	But, for ℓ = 1, the only
	allowed.		possible value of m_{ℓ} is 0.	possible values of m_e are -1 , 0, +1.
	General scheme for genera	ating quantum numbers:	Therefore, Set III is not	
1.	Start with <i>n</i> , the principal q	uantum number.	allowed.	Therefore, Set IV is not
2.	Then assign ℓ , the angular The values of ℓ range from	momentum quantum number. 0 to (<i>n</i> – 1) in integers.		allowed.
3.	Next assign m_e , which is th m_e can take on integer valu	e magnetic quantum number. Ies ranging from $-\ell$ to $+\ell$.		
4	Finally assign <i>m</i> , the spin of	nuantum number		

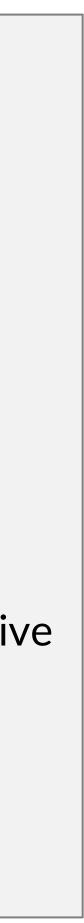
Finally, assign m_s , the spin quantum number. 4. $m_{\rm s}$ can only take on two values: +½ and -½.

Arrange the following sets of atoms in order of increasing atomic radii/size.

- answer -

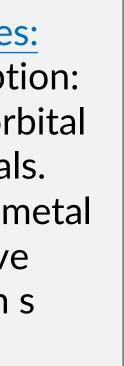
	Atoms	Ordered Set
(a)	Sn, Xe, Rb, Sr	Xe < Sn < Sr < Rb
(b)	Rn, He, Xe, Kr	He < Kr < Xe < Rn
(c)	Pb, Ba, Cs, At	At < Pb < Ba < Cs
(d)	Ga, N, Cs, P	N < P < Ga < Cs
(e)	O ²⁻ , F ⁻ , Na ⁺ , Mg ²⁺	$Mg^{2+} < Na^+ < F^- < O^{2-}$




For the <u>ions</u>, consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

Arrange the following sets of atoms in order of increasing first ionization energies.

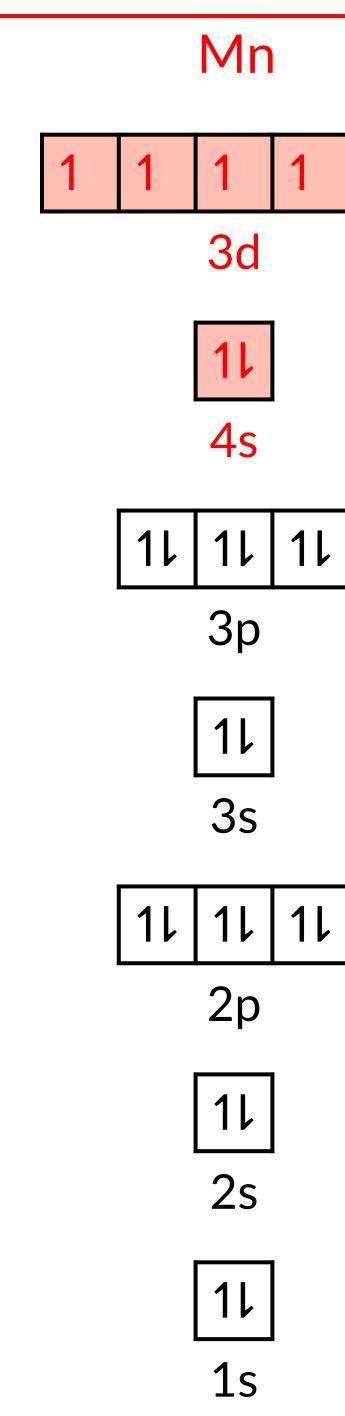
	Atoms	Ordered Atoms
(a)	B, N, Rb	Rb < B < N
(b)	Li, C, Si	Li < Si < C
(c)	Mg, O, P, Na	Na < Mg < P < O
(d)	Te, Cs, F, Sn, Se	Cs < Sn < Te < Se <


For each of the following sets of atom/ions, determine which

	Set	Property	Answer
(a)	H, He ⁺ , Li ²⁺ , Be ³⁺	Largest ionization energy?	Be ³⁺
(b)	S ²⁻ , Ca ²⁺ , K ⁺ , Cl ⁻	Largest size?	S ^{2–}
(c)	K+, Ca+, Ar+, CI+, S+	Smallest ionization energy?	Ca ⁺
(d)	V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	Cu ²⁺
(e)	Se ²⁻ , Br ⁻ , Sr ²⁺ , Zr ⁴⁺ , Rb ⁺	Smallest ionization energy?	Se ^{2–}
(f)	S ²⁻ , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	S ²⁺
(g)	S ²⁻ , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	S ²⁺

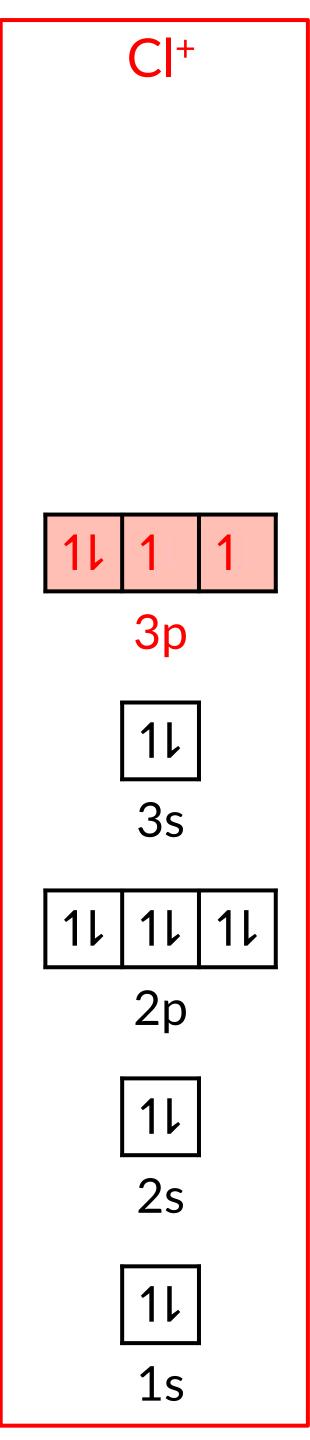
of the set has the	•
--------------------	---

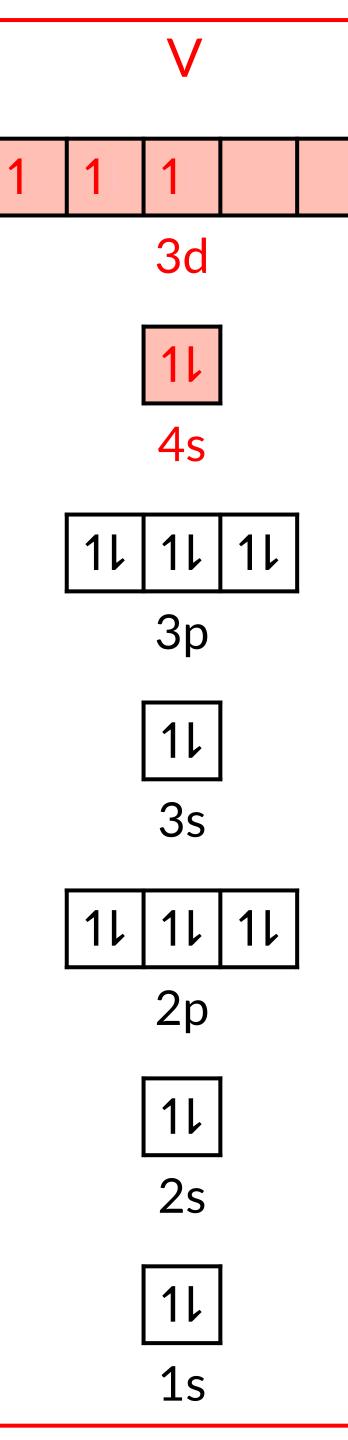
Write the electronic configuration for the following atoms/ions.

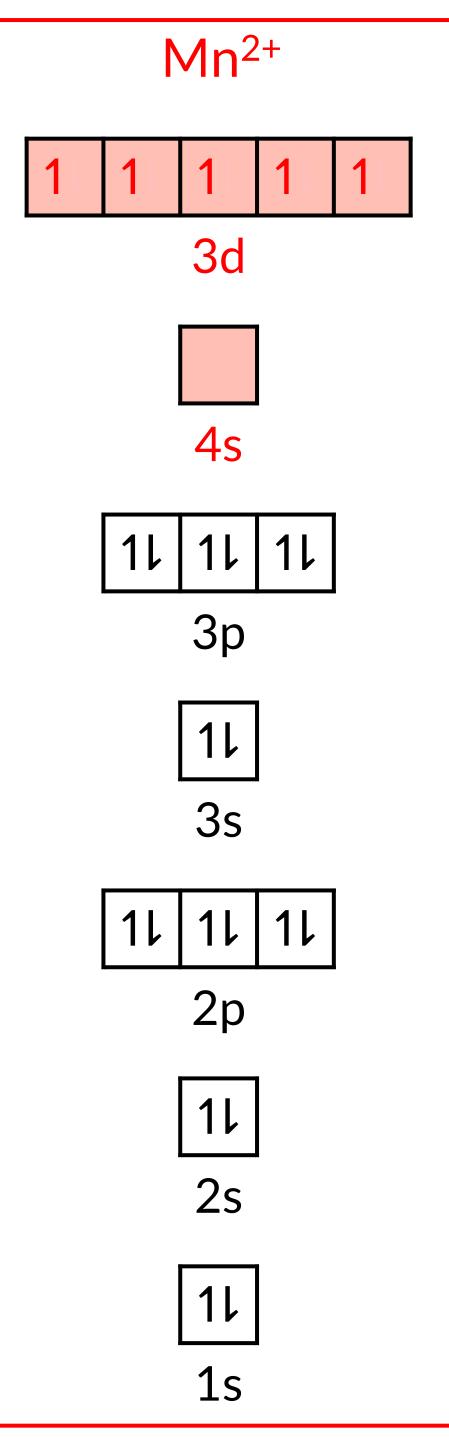

	Atom/Ion	Full Configuration	Noble-Gas Configuration	
(a)	Cl+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴	
(b)	V	$1s^22s^22p^63s^23p^64s^23d^3$	[Ar]4s ² 3d ³	
(c)	Mn	$1s^22s^22p^63s^23p^64s^23d^5$	[Ar]4s ² 3d ⁵	
(d)	Mn ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	[Ar]3d ⁵	Special Notes 1. Cu is an exception
(e)	Ti ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²	[Ar]3d ²	fills half an s orb and all d orbitals 2. For transition m
(f)	Cu	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	[Ar]4s ¹ 3d ¹⁰	cations, remove electrons from s orbital first.
(g)	Cu ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	[Ar]3d ⁹	UIDITAL III St.
(h)	Cu+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰	[Ar]3d ¹⁰	
(i)	Te ^{2–}	$1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^6$	[Kr]5s ² 4d ¹⁰ 5p ⁶	

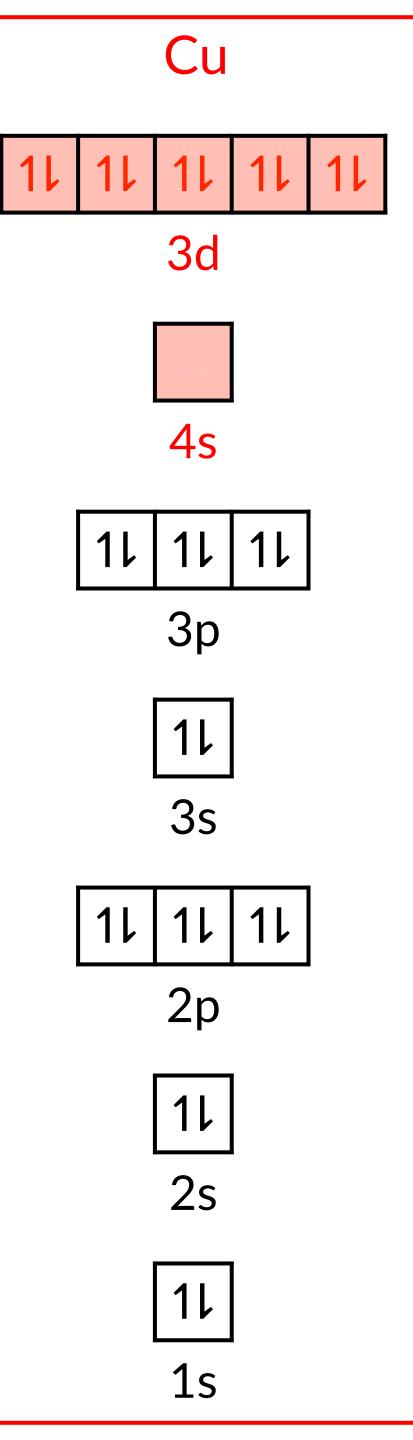
Determine the number of unpaired electrons for the following atoms/ions.

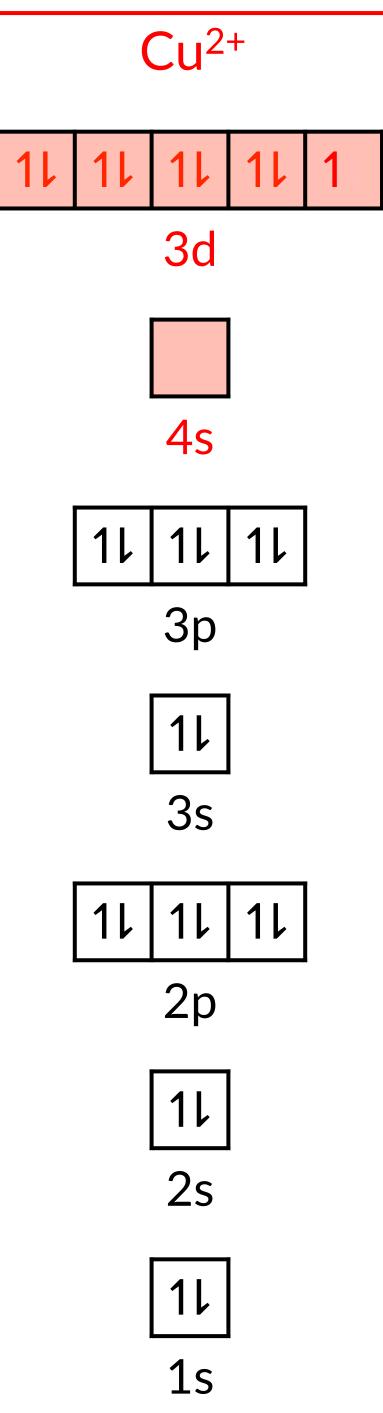
- answer -

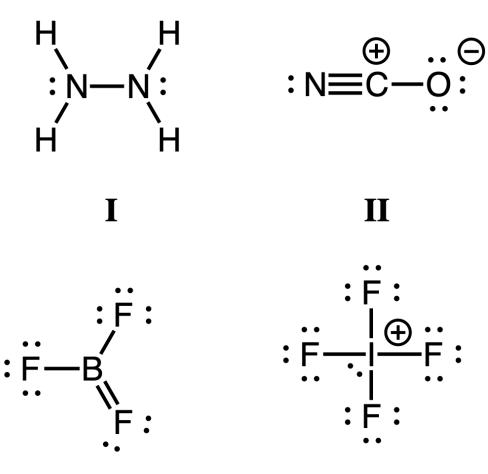

	A 1 /1		
	Atom/Ion	Noble-Gas Configuration	Unpaired Electrons
(a)	Cl+	[Ne]3s ² 3p ⁴	2
(b)	V	[Ar]4s ² 3d ³	3
(c)	Mn	[Ar]4s ² 3d ⁵	5
(d)	Mn ²⁺	[Ar]3d ⁵	5
(e)	Ti ²⁺	[Ar]3d ²	2
(f)	Cu	[Ar]4s ¹ 3d ¹⁰	1
(g)	Cu ²⁺	[Ar]3d ⁹	1
(h)	Cu+	[Ar]3d ¹⁰	0
(i)	Te ²⁻	[Kr]5s ² 4d ¹⁰ 5p ⁶	0

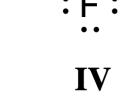


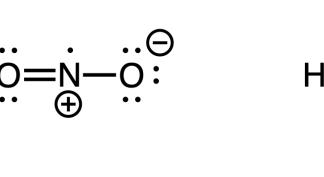

More examples


on next slide.

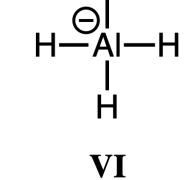


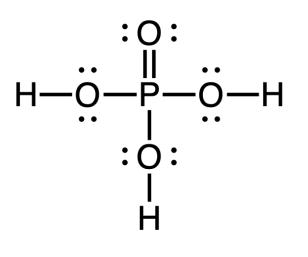





Consider the following seven Lewis structures. Assume the total number of electrons in each structure is correct.

- answer -



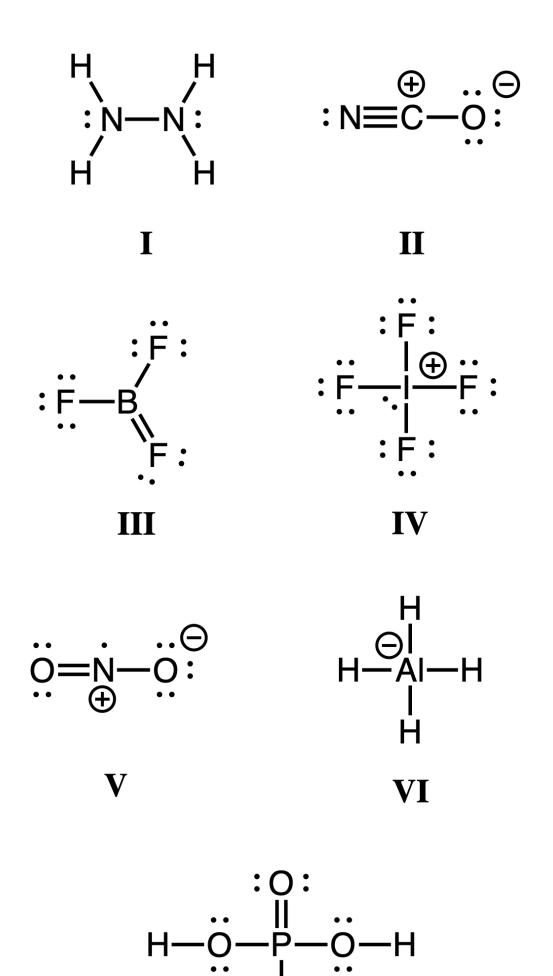

III

- Which structures have an atom that breaks the octet rule? (A)
 - Structure IV
 - Structure V \rightarrow

Structure VII \rightarrow

- Which structures have an incorrect formal charge assignment? (B) Structure II Carbon should be 0 Structure III Boron should be +1 and F (in B=F bond) should be -1 \rightarrow
- (C)Structures II and III

(D) Structure III


- Iodine has 10 electrons
- Nitrogen has 5 electrons
- Phosphorus has 10 electrons

Which structures could have a reasonable resonance structure that obeys the octet rule?

If the electronegativities of H and B are equal, which structure has the most polar bond? Structure VI Structure VII

Consider the following seven Lewis structures. Assume the total number of electrons in each structure is correct.

- answer -

: Ö:

Η

VII

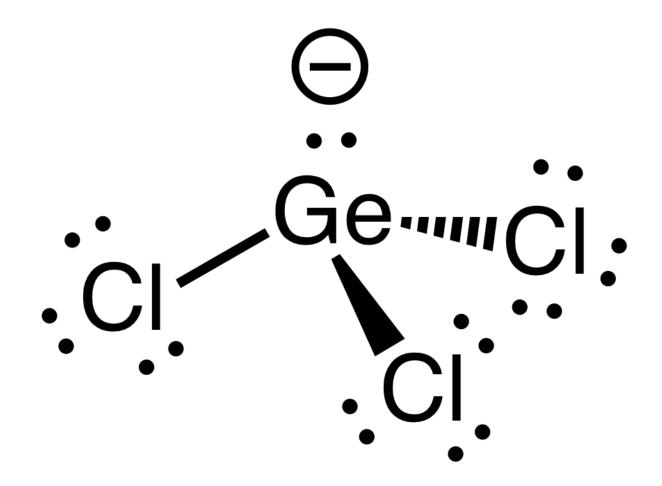
- Which structures contain only one π bond? (A) Structures III and VII
- **(B)** Structure V
- Which structures contain an sp-hybridized atom? (C)Structure II
- (D)
 - Structure III \rightarrow
 - Structure V

Structure VI \rightarrow

(E) Which structures have a bond angle that is 180°? Structure II Linear geometry \rightarrow Structure IV See-saw geometry; one F–I–F bond angles is 180° \rightarrow

Which structures would be paramagnetic based only on the Lewis structures?

Nitrogen has one unpaired electron


 \rightarrow Both C and N are sp-hybridized

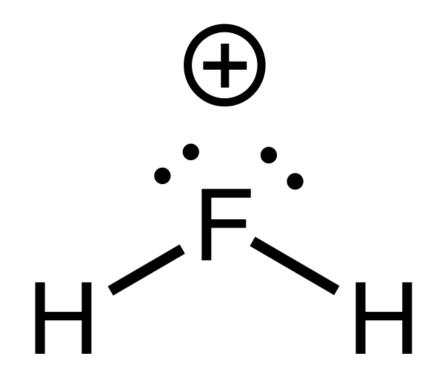
Which structures contain an sp²-hybridized atom?

- B and F (in B=F bond) are sp²-hybridized
- N and O (in N=O bond) are sp²-hybridized
- O atom (in P=O bond) is sp²-hybridized

Consider the molecular ion $[GeCl_3]^-$.

- (a) Draw the Lewis structure, including any lone pairs and formal charges.
- (b) Give the molecular geometry at the central atom.
- (c) State the hybridization at the central atom.
- (d) Determine if the molecule is polar or nonpolar. - answer -

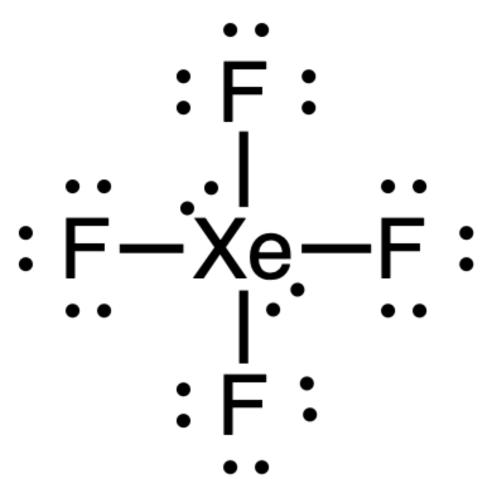
Steric Number at Ge Molecular Geometry at Ge Hybridization at Ge Polar/Nonpolar?


- = 4 (3 atoms + 1 lone pair)
- = Trigonal Pyramid
- $= sp^3$
- = Polar

Consider the molecular ion $[FH_2]^+$.

- (a) Draw the Lewis structure, including any lone pairs and formal charges.
- (b) Give the molecular geometry at the central atom.
- (c) State the hybridization at the central atom.
- (d) Determine if the molecule is polar or nonpolar.

- answer -

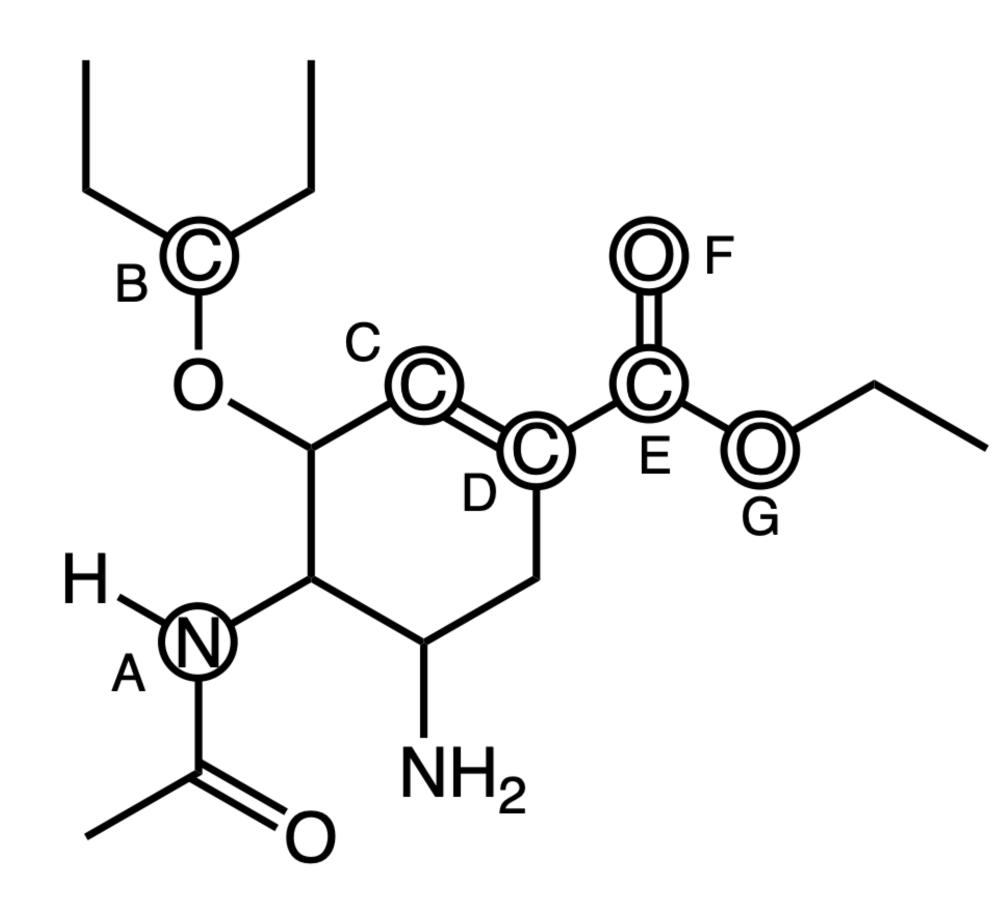


Steric Number at F Molecular Geometry at F Hybridization at F Polar/Nonpolar?

- = 4 (2 atoms + 2 lone pair)
- = Bent (or angular)
- $= sp^3$
- = Polar

Consider the molecule XeF₄.

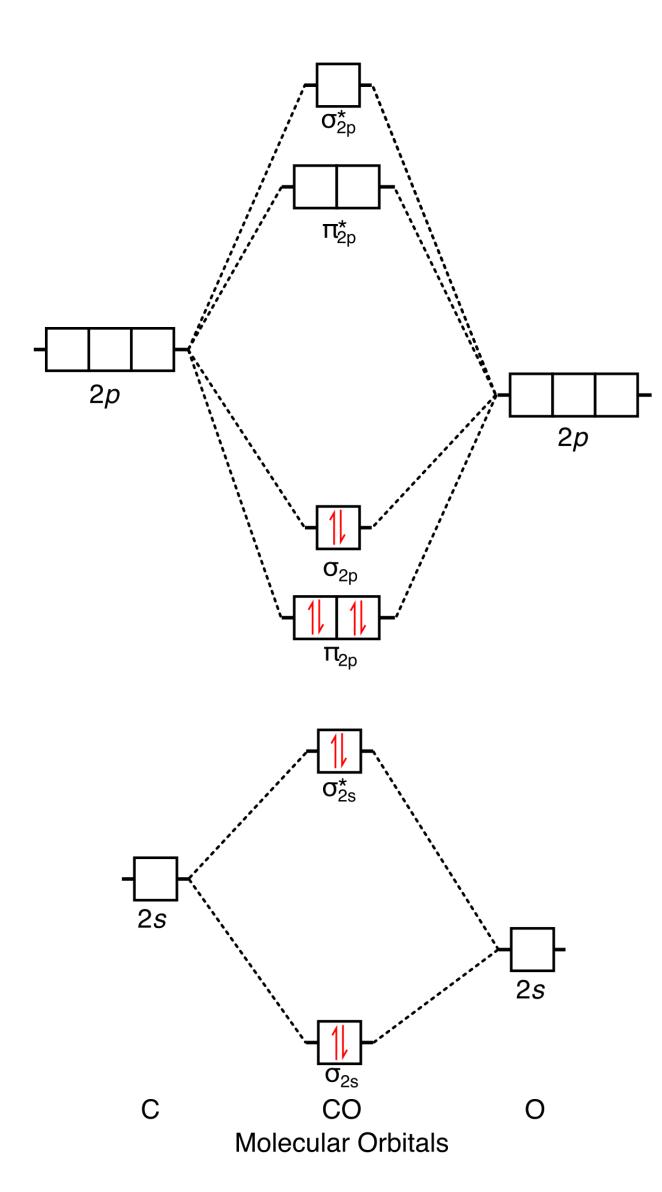
- (a) Draw the Lewis structure, including any lone pairs and formal charges.
- (b) Give the molecular geometry at the central atom.
- (c) State the hybridization at the central atom.
- (d) Determine if the molecule is polar or nonpolar. - answer -


Steric Number at Xe Molecular Geometry at Xe Hybridization at Xe Polar/Nonpolar?

- = 6 (4 atoms + 2 lone pair)
- = Square Planar
- = sp³d²
- = Nonpolar

Consider the molecule Tamiflu shown below. For each circled atom (labeled A-G), give the ...

(a) Molecular geometry


(b) Hybridization

Atom Label	Geometry	Hybridization
Α	Trigonal pyramid	sp ³
В	Tetrahedral	sp ³
С	Trigonal planar	sp ²
D	Trigonal planar	sp ²
Ε	Trigonal planar	sp ²
F	N/A	sp ²
G	Bent (or angular)	sp ³

Consider carbon monoxide (CO) and its molecular orbital diagram below.

- answer -

(A) Using the diagram on the left, fill in the electrons for the molecular orbitals of CO. See diagram (not necessary to fill atomic orbitals)

- **(B)**
- (C)Diamagnetic (all electrons are paired)
- (D)

(E) Do you expect CO^{2-} to be paramagnetic or diamagnetic? Paramagnetic (2 unpaired electrons; 1 in each π^*_{2p} orbital)

Determine the bond order for CO based on your diagram.

BO = $\frac{1}{2}$ [bonding e⁻ – antibonding e⁻] = $\frac{1}{2}$ [8 – 2] = 3 \rightarrow triple bond

Do you expect CO to be paramagnetic or diamagnetic?

Do you expect CO⁴⁺ to be paramagnetic or diamagnetic? Paramagnetic (2 unpaired electrons; 1 in each π_{2p} orbital)