EXAM 1 Review Session

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2018

www.mioy.org/chem161

OUTLINE

- 1. Significant Figures
- 2. Dimensional Analysis
- 3. Elements and Atoms
- 4. Naming Compounds
- 5. The Mole: Atomic Mass, Molar Mass, and Avogadro's Number
- 6. Chemical Composition: Mass Percent, Empirical/Molecular Formulas
- 7. Balancing Chemical Equations
- 8. Stoichiometry and Mole-Mole Ratios
- 9. Limiting Reactants & Yields

Counting Significant Figures

Nonzero numbers are always significant

What about zeroes?

- Leading zeroes
- Captive/trapped zeroes
- Trailing zeroes (after decimal)
- = <u>not</u> significant
- = significant
- (after decimal) = significant

0.0003040 meters not significant significant

CHEMISTRY 161 – Fall 2018

Dr. Huynh

Calculations with Significant Figures

ROUND AT THE END

Multiplication/Division: number with *less* significant figures

CHEMISTRY 161 – Fall 2018

Dr. Huynh

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division: number with *less* significant figures

$$\frac{2.7991}{4.22} = 0.663294$$

7.23 + 70 + 3.7795 = 81.0795

$$\frac{4.771 + 2.3}{3.12} = 2.26634615$$

CHEMISTRY 161 – Fall 2018

Dr. Huynh

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division: number with *less* significant figures $\frac{2.7991}{4.22} = 0.663294 = 0.663$

7.23 + 70 + 3.7795 = 81.0795

$$\frac{4.771 + 2.3}{3.12} = 2.26634615$$

CHEMISTRY 161 – Fall 2018

Dr. Huynh

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division: number with *less* significant figures $\frac{2.7991}{4.22} = 0.663294 = 0.663$

7.23 + 70 + 3.7795 = 81.0795 = 80

$$\frac{4.771 + 2.3}{3.12} = 2.26634615$$

CHEMISTRY 161 – Fall 2018

Dr. Huynh

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division: number with *less* significant figures $\frac{2.7991}{4.22} = 0.663294 = 0.663$

7.23 + 70 + 3.7795 = 81.0795 = 80

$$\frac{4.771 + 2.3}{3.12} = 2.26634615 = 2.3$$

Back to the Basics: Fractions

We can do these types of calculations already

$$\frac{4}{9} \times \frac{1}{6} = \frac{4}{54} = \frac{2}{27}$$
$$\frac{4}{5} \times \frac{3}{4} \times \frac{5}{2} = \frac{3}{2}$$

Back to the Basics: Fractions

We can do these types of calculations already

$$\frac{4}{9} \times \frac{1}{6} = \frac{4}{54} = \frac{2}{27}$$
$$\frac{4}{5} \times \frac{3}{4} \times \frac{5}{2} = \frac{3}{2}$$

Back to the Basics: Fractions

We can do these types of calculations already

$$\frac{4}{9} \times \frac{1}{6} = \frac{4}{54} = \frac{2}{27}$$
$$\frac{4}{54} \times \frac{3}{4} \times \frac{5}{2} = \frac{3}{2}$$

Extend Fractions to Multiplying Units

Unit conversion is just multiplying fractions!

 $\frac{\cancel{4}}{\cancel{8}} \times \frac{3}{\cancel{4}} \times \frac{\cancel{8}}{\cancel{2}} = \frac{3}{\cancel{2}}$

Extend Fractions to Multiplying Units

Unit conversion is just multiplying fractions!

 $\frac{\cancel{4}}{\cancel{8}} \times \frac{3}{\cancel{4}} \times \frac{\cancel{8}}{\cancel{2}} = \frac{3}{\cancel{2}}$

The Atom

_	PARTICLE	MASS	CHARGE
-	Electron	9.11 × 10⁻³¹ kg	1-
	Proton	1.67 × 10 ⁻²⁷ kg	1+
	Neutron	1.67 × 10⁻²² kg	0

The nucleus is very <u>dense</u>: A proton/neutron is ~2000 times heavier than an electron

CHEMISTRY 161 – Fall 2018

Dr. Huynh

Atomic Symbols

SYMBOL	64 30 ^{Zn}	³² 16 ^S	
# Protons			40
# Neutrons			50
# Electrons			40
Mass Number			90

SYMBOL	64 30 ^{Zn}	³² 16 ^S	90 40 ² r
# Protons	30	16	40
# Neutrons	34	16	50
# Electrons	30	16	40
Mass Number	64	32	90

SYMBOL	64 30 ^{Zn}	32 16 ^S	90 40 ² r
# Protons	30	16	40
# Neutrons	34	16	50
# Electrons	30	16	40
Mass Number	64	32	90
SYMBOL	64 ₃₀ Zn ²⁺	³² s ⁻ 16 ^s	$^{90}_{40}$ Zr ⁴⁺
# Protons			
# Neutrons			
# Electrons			
Mass Number			

SYMBOL	64 30 ^{Zn}	32 16 ^S	90 40 ^Z r
# Protons	30	16	40
# Neutrons	34	16	50
# Electrons	30	16	40
Mass Number	64	32	90
SYMBOL	$_{30}^{64}$ Zn ²⁺	³² S ⁻ 16 ^S	90 _{Zr} 4+
SYMBOL # Protons	⁶⁴ ₃₀ Zn ²⁺ 30	³² ₁₆ s ⁻ 16	90 ₄₀ Zr ⁴⁺ 40
	30	10	40
# Protons	30	16	40

SYMBOL	64 30 ^{Zn}	32 16 ^S	90 40 ² r
# Protons	30	16	40
# Neutrons	34	16	50
# Electrons	30	16	40
Mass Number	64	32	90
SYMBOL	64 ₃₀ Zn ²⁺	³² 5-	90 _{2r} 4+
SYMBOL # Protons	⁶⁴ ₃₀ Zn ²⁺ 30	³² ₁₆ s ⁻ 16	⁹⁰ Zr ⁴⁺ 40
	30	10	40
# Protons	30	16	40 40

General Rules for Naming Compounds

- Metal + Nonmetal
- Cation + Anion
- Must be <u>neutral</u> overall!

Naming:

IONIC

MOLECULAR

 Cation + Anion Root + "-ide" NaCl → Sodium Chloride

Nonmetal + Nonmetal

Naming:

- 1st element: full name
- 2nd element: root + "-ide"
- Use prefixes (Table 2.2) BF₃ \rightarrow Boron Trifluoride

General Rules for Naming Compounds

- Metal + Nonmetal
- Cation + Anion
- Must be <u>neutral</u> overall!

Naming:

Cation + Anion Root + "-ide"
 NaCl → Sodium Chloride

More exotic rules

- Transition metals require charge Hint: Find charge of anion first!
- Cation + Charge + Anion Root + "-ide" FeCl₂ → Iron (II) Chloride PbO₂ → Lead (IV) Oxide
- Polyatomics are "one ion" (Table 2.3)
 AgCN → Silver (I) Cyanide

Nonmetal + Nonmetal

Naming:

- 1st element: full name
- 2nd element: root + "-ide"
- Use prefixes (Table 2.2)
 - $BF_3 \rightarrow Boron Trifluoride$

More exotic rules

- Don't use "mono-" for first atom NO → Nitrogen Monoxide
- Drop "extra" vowels
 N₂O₅ → Dinitrogen Pentoxide
- Oxoanions: -ate has more O's than -ite NO₃⁻ → Nitr<u>ate</u> NO₂⁻ → Nitrite

IONIC

MOLECULAR

- Atoms are very small and very light
- Periodic table reports the measured *average atomic mass*
 - 1 hydrogen atom = 1.008 amu (atomic mass unit)
 - Makes it really impractical to work with in a laboratory/life

Convince yourself of this:

The mass of one atom (even one molecule) is horribly small. For instance: 1 H atom weighs 1.674×10^{-24} grams Recognize this is not a useful unit to use in life!

- Ask yourself: If an amu is useless, what units do we want to use for mass? [Answer: grams]
- So, we would like if: H: 1.008 amu means 1.008 g C: 12.01 amu means 12.01 g
- But how...?

Nigray i plagere 2 playcing ley datogras o o totatamse la lettistikov del tid nie gester.

Ngay iplagete2ptarboncatorons

o ototætænsætelettilstørovateltid å egjester.

 Eventually you will put enough atoms to achieve a reading of 1.008 g for hydrogen and 12.01 g for carbon. In other words:

	1 atom	"x" atoms		
Η	1.008 amu	1.008 g		
С	12.01 amu	12.01 g		

 Eventually you will put enough atoms to achieve a reading of 1.008 g for hydrogen and 12.01 g for carbon. In other words:

	1 atom	"x" atoms
Η	1.008 amu	1.008 g
С	12.01 amu	12.01 g

• But how many atoms ("x") did we need to get that mass in g?

 Eventually you will put enough atoms to achieve a reading of 1.008 g for hydrogen and 12.01 g for carbon. In other words:

	1 atom	"x" atoms
Η	1.008 amu	1.008 g
С	12.01 amu	12.01 g

• But how many atoms ("x") did we need to get that mass in g? $1.008 \text{ g H} \times \frac{1 \text{ atom H}}{1.674 \times 10^{-24} \text{ g}} = 6.022 \times 10^{23} \text{ atoms H}$ Look familiar?!

Avogadro's Number = 6.022×10^{23} and the MOLE

 Avogadro's number is what connects the atomic masses (in amu) to masses in grams! So...

> $1.008 \text{ g H} = 6.022 \times 10^{23} \text{ atoms H} = 1 \text{ mol H}$ $12.01 \text{ g C} = 6.022 \times 10^{23} \text{ atoms C} = 1 \text{ mol C}$ $16.00 \text{ g O} = 6.022 \times 10^{23} \text{ atoms O} = 1 \text{ mol O}$ $14.01 \text{ g N} = 6.022 \times 10^{23} \text{ atoms N} = 1 \text{ mol N}$

 Take-home message: The units on the periodic table that are useful are g/mol (molar mass). Often, we are dealing with large numbers of atoms/molecules, so g/mol is easier to deal with.

How many atoms of Mg are in 10.0 g Mg?

How many atoms of Mg are in 10.0 g Mg?

The molar mass of Mg is 24.31 g/mol.

Let's do it in steps just for clarity.

First, convert mass to moles using molar mass of Mg:

$$10.0 \text{ g Mg} \times \frac{1 \text{ mol Mg}}{24.31 \text{ g Mg}} = 0.411_4 \text{ mol Mg}$$

Second, convert moles to atoms using Avogadro's number:

$$0.411_4 \text{ mol Mg} \times \frac{6.022 \times 10^{23} \text{ atoms}}{1 \text{ mol}} = 2.48 \times 10^{23} \text{ atoms Mg}$$

Everything in one giant conversion:

$$10.0 \text{ g Mg} \times \frac{1 \text{ mol Mg}}{24.31 \text{ g Mg}} \times \frac{6.022 \times 10^{23} \text{ atoms}}{1 \text{ mol}} = 2.48 \times 10^{23} \text{ atoms Mg}$$

SUMMARY: MOLE IS CENTRAL

Which has more atoms?

2 kg of Cu or 2 kg Mg

Which has more atoms?

2 kg of Cu or 2 kg Mg

The atomic mass of Cu is 63.55 amu.

The atomic mass of Mg is 24.31 amu.

 \rightarrow Since each atom of Mg weighs less (1 atom Mg = 24.31 amu), it will take <u>more</u> atoms of Mg to reach 2 kg of Mg.

Avogadro's number also applies to molecules/compounds

- Similar to how we don't really encounter the mass of one atom, we rarely encounter the mass of one molecule in real life.
- Again, these masses would be very small numbers.
- For compounds or molecules, we also work in moles.
- The mass of 1 mole of a compound:

Ex.) The molar mass of H_2O is 18.02 g/mol.

1 molecule H ₂ O	\rightarrow	2 atoms H	+	1 atom O		
1 mol H ₂ O	\rightarrow	2 mol H	+	1 mol O		
1 mol H ₂ O	=	2 (1.008 g)	+	1 (16.00 g)	=	18.02 g H ₂ O

Find the molar mass of ammonium carbonate.

Dr. Huynh

Find the molar mass of ammonium carbonate.

First, write the formula: $(NH_4)_2CO_3$

 $1 \mod (NH_4)_2 CO_3 = 2 \mod N + 8 \mod H + 1 \mod C + 3 \mod O$

Find the molar mass of ammonium carbonate.

First, write the formula: $(NH_4)_2CO_3$ $1 \mod (NH_4)_2 CO_3 = 2 \mod N + 8 \mod H + 1 \mod C + 3 \mod O$ $2 \mod N \rightarrow 2 \mod N \times \frac{14.01 \text{ g N}}{1 \mod N} = 28.02 \text{ g N}$ $\rightarrow 8 \text{ mol H} \times \frac{1.008 \text{ g H}}{1 \text{ mol H}} = 8.064 \text{ g H}$ 8 mol H $1 \mod C \quad \rightarrow \quad 1 \mod C \times \frac{12.01 \text{ g C}}{1 \mod C} = 12.01 \text{ g C}$ $3 \mod 0 \rightarrow 3 \mod 0 \times \frac{16.00 \text{ g } 0}{1 \mod 0}$ = 48.00 g O 96.09 g $1 \mod (NH_4)_2 CO_3 = 2 \mod N + 8 \mod H + 1 \mod C + 3 \mod O$ = 2(14.01 g) + 8(1.008 g) + 1(12.01 g) + 3(16.00 g)

 $= 96.09 \, \mathrm{g}$

SUMMARY: MOLE IS CENTRAL

How many molecules are in a 50.0 g sample of ammonium carbonate?

How many molecules are in a 50.0 g sample of ammonium carbonate?

The molar mass of $(NH_4)_2CO_3$ is 96.09 g/mol.

The procedure is similar to what we did for atoms, but now use *molecules*.

First, convert from mass to number of moles using the molar mass:

$$50.0 \text{ g} (\text{NH}_4)_2 \text{CO}_3 \times \frac{1 \text{ mol} (\text{NH}_4)_2 \text{CO}_3}{96.09 \text{ g} (\text{NH}_4)_2 \text{CO}_3} = 0.520_3 \text{ mol} (\text{NH}_4)_2 \text{CO}_3$$

Second, convert moles to number of *molecules* using Avogadro's number:

 $0.520_3 \text{ mol } (\text{NH}_4)_2 \text{CO}_3 \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol}} = 3.13 \times 10^{23} \text{ molecules } (\text{NH}_4)_2 \text{CO}_3$

How many molecules are in a 50.0 g sample of ammonium carbonate?

The molar mass of $(NH_4)_2CO_3$ is 96.09 g/mol.

The procedure is similar to what we did for atoms, but now use *molecules*.

First, convert from mass to number of moles using the molar mass:

$$50.0 \text{ g} (\text{NH}_4)_2 \text{CO}_3 \times \frac{1 \text{ mol } (\text{NH}_4)_2 \text{CO}_3}{96.09 \text{ g} (\text{NH}_4)_2 \text{CO}_3} = 0.520_3 \text{ mol } (\text{NH}_4)_2 \text{CO}_3$$

Second, convert moles to number of *molecules* using Avogadro's number:

 $0.520_3 \text{ mol } (\text{NH}_4)_2 \text{CO}_3 \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol}} = 3.13 \times 10^{23} \text{ molecules } (\text{NH}_4)_2 \text{CO}_3$

Everything in one giant conversion: $50.0 \text{ g} (\text{NH}_4)_2 \text{CO}_3 \times \frac{1 \text{ mol} (\text{NH}_4)_2 \text{CO}_3}{96.09 \text{ g} (\text{NH}_4)_2 \text{CO}_3} \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol}} = 3.13 \times 10^{23} \text{ molecules} (\text{NH}_4)_2 \text{CO}_3$

How many hydrogen atoms are in a 50.0 g sample of ammonium carbonate?

The molar mass of $(NH_4)_2CO_3$ is 96.09 g/mol.

The procedure is similar to what we did for atoms, but now use *molecules*.

 $50.0 \text{ g} (\text{NH}_4)_2 \text{CO}_3 \times \frac{1 \text{ mol} (\text{NH}_4)_2 \text{CO}_3}{96.09 \text{ g} (\text{NH}_4)_2 \text{CO}_3} \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol}} = 3.13 \times 10^{23} \text{ molecules} (\text{NH}_4)_2 \text{CO}_3$

How many hydrogen atoms are in a 50.0 g sample of ammonium carbonate?

The molar mass of $(NH_4)_2CO_3$ is 96.09 g/mol.

The procedure is similar to what we did for atoms, but now use *molecules*. $50.0 \text{ g} (\text{NH}_4)_2 \text{CO}_3 \times \frac{1 \text{ mol} (\text{NH}_4)_2 \text{CO}_3}{96.09 \text{ g} (\text{NH}_4)_2 \text{CO}_3} \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol}} = 3.13 \times 10^{23} \text{ molecules} (\text{NH}_4)_2 \text{CO}_3$

Remember that:

- 1 molecule of $(NH_4)_2CO_3 = 2$ atoms N + 8 atoms H + 1 atom C + 3 atoms O
- 1 mole (NH₄)₂CO₃ = 2 mole N + 8 mole H + 1 mole C + 3 mole O

How many hydrogen atoms are in a 50.0 g sample of ammonium carbonate?

The molar mass of $(NH_4)_2CO_3$ is 96.09 g/mol.

The procedure is similar to what we did for atoms, but now use *molecules*. $50.0 \text{ g} (\text{NH}_4)_2 \text{CO}_3 \times \frac{1 \text{ mol} (\text{NH}_4)_2 \text{CO}_3}{96.09 \text{ g} (\text{NH}_4)_2 \text{CO}_3} \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol}} = 3.13 \times 10^{23} \text{ molecules} (\text{NH}_4)_2 \text{CO}_3$

Remember that:

- 1 molecule of $(NH_4)_2CO_3 = 2$ atoms N + 8 atoms H + 1 atom C + 3 atoms O
- 1 mole (NH₄)₂CO₃ = 2 mole N + 8 mole H + 1 mole C + 3 mole O

So:

$$3.13_4 \times 10^{23}$$
 molecules (NH₄)₂CO₃× $\frac{8 \text{ atoms H}}{1 \text{ molecule (NH4)}_2CO_3} = 2.51 \times 10^{24}$ atoms H

If you have equal mole samples of each compound, which contains the greatest number of oxygen atoms?

Magnesium nitrate

Dinitrogen pentoxide

Iron(III) phosphate

Barium oxide

Potassium acetate

If you have equal mole samples of each compound, which contains the greatest number of oxygen atoms?

Magnesium nitrate	<u>Formula</u> Mg(NO ₃) ₂	<u>Moles of O</u>
Dinitrogen pentoxide	N_2O_5	
Iron(III) phosphate	FePO ₄	
Barium oxide	BaO	
Potassium acetate	KCH ₃ CO ₂	

If you have <u>equal</u> mole samples of each compound, which contains the greatest number of oxygen atoms?

	<u>Formula</u>	Moles of O
Magnesium nitrate	Mg(NO ₃) ₂	6 mol O
Dinitrogen pentoxide	N_2O_5	5 mol O
Iron(III) phosphate	FePO ₄	4 mol O
Barium oxide	BaO	1 mol O
Potassium acetate	KCH ₃ CO ₂	2 mol O

CHEMISTRY 161 – Fall 2018

Dr. Huynh

Introduction to mass percent

CHEMISTS CARE ABOUT MASS PERCENT!

% Mass = $\frac{\text{mass part}}{\text{mass whole}} \times 100\%$

How do I calculate the mass percentages for 1 mol CH₄?

• Remember that the molar mass of CH_4 is 16.04 g/mol:

$$1 \mod CH_4$$
 = $1 \mod C$ + $4 \mod H$

= 1 (12.01 g) + 4 (1.008 g) = 16.04 g

$$\frac{\text{Mass}}{\text{Mass}} = \frac{\text{mass part}}{\text{mass whole}} \times 100\%$$

% C $\rightarrow \frac{1(12.01) \text{ g}}{16.04 \text{ g}} \times 100\% = 74.90\%$ C
% H $\rightarrow \frac{4(1.008) \text{ g}}{16.04 \text{ g}} \times 100\% = 25.10\%$ H
100.0% tota

How do I calculate the mass percentages for 2 mol CH₄?

• The molar mass of CH_4 is 16.04 g/mol, but now:

$$2 \text{ mol CH}_4$$
 = 2 mol C + 8 mol H

= 2(12.01 g) + 8(1.008 g) = 32.08 g

$$\frac{\text{Mass}}{\text{Mass}} = \frac{\text{mass part}}{\text{mass whole}} \times 100\%$$

$$\% \text{ C} \rightarrow \frac{2(12.01) \text{ g}}{32.08 \text{ g}} \times 100\% = 74.90\% \text{ C}$$

$$\% \text{ H} \rightarrow \frac{8(1.008) \text{ g}}{32.08 \text{ g}} \times 100\% = 25.10\% \text{ H}$$

$$100.0\% \text{ tota}$$

Percent composition is <u>independent</u> of the starting amount!

This is why we usually *assume* we have 100 g or 1 mol. These are just super easy numbers to work with.

<u>Note</u>: If you wanted to use a strange amount, like 0.27 mol or 74.5 g of substance, your answers would be the same but the math isn't as convenient. BUT you'll still be right. ⁽ⁱ⁾

What is the mass percent of nitrogen in barium nitrate?

What is the mass percent of nitrogen in barium nitrate?

- First, write the formula: $Ba(NO_3)_2$
- Second, determine the molar mass = 261.35 g/mol

What is the mass percent of nitrogen in barium nitrate?

- First, write the formula: $Ba(NO_3)_2$
- Second, determine the molar mass = 261.35 g/mol

We know that there are 2 mol N for 1 mol of $Ba(NO_3)_2$, so:

$$\frac{2(14.01) \text{ g}}{261.35 \text{ g}} \times 100\% = 10.72\% \text{ N}$$

If you have <u>equal</u> mass samples of each compound, which contains the <u>greatest</u> number of oxygen atoms?

Magnesium nitrate	<u>Formula</u> Mg(NO ₃) ₂
Dinitrogen pentoxide	N_2O_5
Iron(III) phosphate	FePO ₄
Barium oxide	BaO
Potassium acetate	KCH ₃ CO ₂

If you have <u>equal</u> mass samples of each compound, which contains the <u>greatest</u> number of oxygen atoms?

Magnesium nitrate	<u>Formula</u> Mg(NO ₃) ₂	One way to solve this is to assume you have 100 g of each
Dinitrogen pentoxide	N_2O_5	compound, then find the total number of O atoms in each
Iron(III) phosphate	FePO ₄	compound.
Barium oxide	BaO	This is a lot of work though!
Potassium acetate	KCH ₃ CO ₂	Consider mass percentages!

If you have <u>equal</u> mass samples of each compound, which contains the <u>greatest</u> number of oxygen atoms?

Magnesium nitrate	<u>Formula</u> Mg(NO ₃) ₂	$\frac{6(16.00 \text{ g})}{148.33 \text{ g}} \times 100\% = 64.72\% \text{ 0}$
Dinitrogen pentoxide	N_2O_5	$\frac{5(16.00 \text{ g})}{108.02 \text{ g}} \times 100\% = 74.06\% \text{ O}$
Iron(III) phosphate	FePO ₄	$\frac{4(16.00 \text{ g})}{150.82 \text{ g}} \times 100\% = 42.43\% \text{ O}$
Barium oxide	BaO	$\frac{1(16.00 \text{ g})}{153.3 \text{ g}} \times 100\% = 10.4\% \text{ O}$
Potassium acetate	KCH ₃ CO ₂	$\frac{2(16.00 \text{ g})}{98.14 \text{ g}} \times 100\% = 32.61\% \text{ O}$

Most often, we use mass percentages to help us figure out what compound we have.

These are called **EMPIRICAL FORMULAS**.

- We want to know: N_xO_y = formula? name?
- Remember: the amount doesn't matter for percent composition!
- Let's assume we have 100 g of our N_xO_y .
- This means that for every 100 g of N_xO_y , we have:
 - 46.7 g of N
 - 53.3 g of O

• We want to know: $N_xO_y =$ formula? name?

We <u>must</u> convert the masses to <u>moles</u>.

N → 46.7 g N ×
$$\frac{1 \text{ mol N}}{14.01 \text{ g N}}$$
 = 3.33 mol N
O → 53.3 g O × $\frac{1 \text{ mol O}}{16.00 \text{ g O}}$ = 3.33 mol O

• We want to know: N_xO_y = formula? name?

We need the simplest whole number ratio! $N \rightarrow 46.7 \text{ g N} \times \frac{1 \text{ mol N}}{14.01 \text{ g N}} = 3.33 \text{ mol N} \rightarrow \frac{3.33 \text{ mol N}}{3.33} = 1 \text{ N}$ $0 \rightarrow 53.3 \text{ g } 0 \times \frac{1 \text{ mol } 0}{16.00 \text{ g } 0} = 3.33 \text{ mol } 0 \rightarrow \frac{3.33 \text{ mol } 0}{3.33} = 10$ Divide the number of moles by the **SMALLEST** value!

• We want to know: N_xO_y = formula? name?

We need the simplest whole number ratio! $N \rightarrow 46.7 \text{ g N} \times \frac{1 \text{ mol N}}{14.01 \text{ g N}} = 3.33 \text{ mol N} \rightarrow \frac{3.33 \text{ mol N}}{3.33} = 1 \text{ N}$ $0 \rightarrow 53.3 \text{ g } 0 \times \frac{1 \text{ mol } 0}{16.00 \text{ g } 0} = 3.33 \text{ mol } 0 \rightarrow \frac{3.33 \text{ mol } 0}{3.33} = 10$

> Empirical Formula: NO | Nitrogen Monoxide

General procedure:

1. Assume a 100 g sample.

Al \rightarrow 41.51 g Al 0 \rightarrow 36.92 g O

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.

Al
$$\rightarrow 41.51 \text{ g Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} = 1.54 \text{ mol Al}$$

0 $\rightarrow 36.92 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 2.31 \text{ mol O}$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.

Al
$$\rightarrow 41.51 \text{ g Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} = 1.54 \text{ mol Al} \rightarrow \frac{1.54 \text{ mol Al}}{1.54} = 1 \text{ Al}$$

0 $\rightarrow 36.92 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 2.31 \text{ mol O} \rightarrow \frac{2.31 \text{ mol O}}{1.54} = 1.5 \text{ O}$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.
- 4. Write empirical formula from simplest whole number ratio.

$$\begin{array}{ll} \text{Al} &\rightarrow 41.51\,\text{g}\,\text{Al} \times \frac{1\,\text{mol}\,\text{Al}}{26.98\,\text{g}\,\text{Al}} = 1.54\,\text{mol}\,\text{Al} \rightarrow \frac{1.54\,\text{mol}\,\text{Al}}{1.54} = 1\,\text{Al} \\ 0 &\rightarrow 36.92\,\text{g}\,0 \times \frac{1\,\text{mol}\,0}{16.00\,\text{g}\,0} = 2.31\,\text{mol}\,0 \rightarrow \frac{2.31\,\text{mol}\,0}{1.54} = 1.5\,0 \end{array}$$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.
- 4. Write empirical formula from simplest whole number ratio.

$$Al \rightarrow 41.51 \text{ g Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} = 1.54 \text{ mol Al} \rightarrow \frac{1.54 \text{ mol Al}}{1.54} = 1 \text{ Al} \times 2 \rightarrow 2 \text{ Al}$$
$$0 \rightarrow 36.92 \text{ g } 0 \times \frac{1 \text{ mol } 0}{16.00 \text{ g } 0} = 2.31 \text{ mol } 0 \rightarrow \frac{2.31 \text{ mol } 0}{1.54} = 1.50 \times 2 \rightarrow 3 0$$
$$Multiply \text{ to get whole numbers!}$$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.
- 4. Write empirical formula from simplest whole number ratio.

$$\begin{array}{rcl} \text{Al} & \rightarrow & 41.51 \,\text{g}\,\text{Al} \times \frac{1 \,\text{mol}\,\text{Al}}{26.98 \,\text{g}\,\text{Al}} = 1.54 \,\text{mol}\,\text{Al} \rightarrow \frac{1.54 \,\text{mol}\,\text{Al}}{1.54} &= & 1 \,\text{Al} & \times 2 \rightarrow & 2 \,\text{Al} \\ \text{O} & \rightarrow & 36.92 \,\text{g}\,\text{O} \times \frac{1 \,\text{mol}\,\text{O}}{16.00 \,\text{g}\,\text{O}} = & 2.31 \,\text{mol}\,\text{O} \rightarrow & \frac{2.31 \,\text{mol}\,\text{O}}{1.54} &= & 1.5 \,\text{O} & \times 2 \rightarrow & 3 \,\text{O} \end{array}$$

Calculate the empirical formula for a halohydrocarbon if it is 71.65% CI, 24.27% C, and 4.07% H by mass.

Assuming a 100 g sample of the halohydrocarbon ($CI_aC_bH_c$):

$$\begin{array}{rcl} \text{Cl} & \rightarrow & 71.65 \text{ g Cl} \times \frac{1 \text{ mol Cl}}{35.45 \text{ g Cl}} = 2.021 \text{ mol Cl} & \rightarrow & \frac{2.021 \text{ mol Cl}}{2.021} & = 1 \text{ Cl} \\ \text{C} & \rightarrow & 24.27 \text{ g C} \times \frac{1 \text{ mol C}}{12.01 \text{ g C}} = 2.021 \text{ mol C} & \rightarrow & \frac{2.021 \text{ mol Cl}}{2.021} & = 1 \text{ Cl} \\ \text{H} & \rightarrow & 4.07 \text{ g H} \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = 4.04 \text{ mol H} & \rightarrow & \frac{4.04 \text{ mol H}}{2.021} & = 2 \text{ H} \end{array}$$

The empirical formula is $CICH_2$.

Determine the molecular formula for the same halohydrocarbon if it has a molar mass of 98.96 g/mol.

We determined previously that the empirical formula is $CICH_2$. The empirical formula mass is 49.48 g/mol.

The molecular formula is <u>always</u> a multiple of the empirical formula. So: $(CICH_2)_n$

We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

$$n = \frac{Molar \ mass}{Empirical \ formula \ mass} = \frac{98.96 \ g}{49.48 \ g} = 2$$

The molecular formula is $(CICH_2)_2$ or $CI_2C_2H_4$.

A compound containing only sulfur and nitrogen is 69.6% S by mass. If its molar mass is 184 g/mol, what is the correct name for it?

First, determine the empirical formula and empirical formula mas:

$$S \rightarrow 69.6 \text{ g S} \times \frac{1 \text{ mol S}}{32.06 \text{ g S}} = 2.17 \text{ mol S} \rightarrow \frac{2.17 \text{ mol S}}{2.17} = 1 \text{ S}$$
$$N \rightarrow 30.4 \text{ g N} \times \frac{1 \text{ mol N}}{14.01 \text{ g N}} = 2.17 \text{ mol N} \rightarrow \frac{2.17 \text{ mol N}}{2.17} = 1 \text{ N}$$

So the empirical formula is SN and the empirical mass is 46.07 g.

We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

$$n = \frac{Molar\ mass}{Empirical\ formula\ mass} = \frac{184\ g}{46.07\ g} = 4$$

The molecular formula is $(SN)_4$ or S_4N_4 or tetrasulfur tetranitride.

MASS SPECTROMETRY

The peak farthest to the right (the one with the largest m/z value) tells you the *estimated* molecular mass of the compound.

Ex) Acetic Acid, C_2H_4O , Molecular Mass = 60.05 g/mol

Notes you don't need to know:

- The other peaks are broken fragments of the molecule.
- The height tells you the abundance of a fragment.
- We use mass spec. to identify elements with near-even (50%:50%) ratio of isotopes, like ⁷⁹Br and ⁸¹Br.

What do chemical equations tell us?

- Formulas for the reactants (left side)
- Formulas for the products (right side)
- Phases, most of the time
- <u>Relative</u> amounts of reactants of reactants and products

$\mathsf{REACTANT} \rightarrow \mathsf{PRODUCTS}$

- Same number of each type of atom on the left (reactants) and right (products) side.
- Law of Conservation of Mass

$\mathsf{REACTANT} \rightarrow \mathsf{PRODUCTS}$

How do we balance chemical equations?

- Mainly trial-and-error (some general strategies though).
- Make sure you have the same number of each type of atom on both sides of the equation.
- Do <u>NOT</u> balance by changing subscripts! Seriously, don't.
- Balance the most complicated molecule *first*.

$\mathsf{REACTANT} \rightarrow \mathsf{PRODUCTS}$

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.

How do I read a chemical equation?

- Subscripts are not conserved!
- Coefficients have no real meaning by themselves...
- <u>RATIO</u> of coefficient is what's important.
- Read it like a recipe:

"For every 2 H₂ molecules, we need 1 O_2 molecule to produce 2 H₂O molecules."

Write a <u>balanced chemical equation</u> for ammonia synthesis from nitrogen and hydrogen gases.

Write a <u>balanced chemical equation</u> for ammonia synthesis from nitrogen and hydrogen gases.

Write out the core of the equation from the description:

$$\frac{1}{2} \operatorname{N}_{2}(g) + \frac{3}{2} \operatorname{H}_{2}(g) \rightarrow \frac{2}{2} \operatorname{NH}_{3}(g)$$

"To make 2 moles NH_3 , we need 1 mole N_2 and 3 moles H_2 ."

Stoichiometry and Mole-Mole Ratios

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$CH_4(g) + __O_2(g) \rightarrow __CO_2(g) + __H_2O(g)$$

WHAT IS A COMBUSTION REACTION?

When we "burn" a hydrocarbon (a compound with C, H, and/or O atoms), it <u>always</u> reacts with O_2 gas in the air to form CO_2 and H_2O gases as products.

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\underbrace{1}_{1} \operatorname{CH}_{4}(g) + \underbrace{2}_{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}_{2} \operatorname{CO}_{2}(g) + \underbrace{2}_{2} \operatorname{H}_{2} \operatorname{O}(g)$

"For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\underbrace{1}_{1} \operatorname{CH}_{4}(g) + \underbrace{2}_{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}_{2} \operatorname{CO}_{2}(g) + \underbrace{2}_{2} \operatorname{H}_{2} \operatorname{O}(g)$

"For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

<u>REMEMBER MY TIP</u>: If you don't know how to start a problem, convert whatever they give you into <u>moles</u> first.

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\underbrace{1}_{1} \operatorname{CH}_{4}(g) + \underbrace{2}_{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}_{2} \operatorname{CO}_{2}(g) + \underbrace{2}_{2} \operatorname{H}_{2} \operatorname{O}(g)$

"For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into **moles** first.

1. Use molar mass of CH_4 to convert from mass to moles.

 $5.00 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4} = 0.311_7 \text{ mol CH}_4$

If 5.00 g of CH₄ (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\underbrace{1}_{1} \operatorname{CH}_{4}(g) + \underbrace{2}_{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}_{2} \operatorname{CO}_{2}(g) + \underbrace{2}_{2} \operatorname{H}_{2} \operatorname{O}(g)$

"For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_4 to convert from mass to moles.

2. Use 2:1 $H_2O:CH_4$ mole-mole ratio to find moles of H_2O .

 $5.00 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4} = 0.311_7 \text{ mol CH}_4$

$$0.311_7 \text{ mol CH}_4 \times \frac{2 \text{ mol H}_2 0}{1 \text{ mol CH}_4} = 0.623_4 \text{ mol H}_2 0$$

If 5.00 g of CH_4 (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

 $\frac{1}{2} \operatorname{CH}_{4}(g) + \underbrace{2}{2} \operatorname{O}_{2}(g) \rightarrow \underbrace{1}{2} \operatorname{CO}_{2}(g) + \underbrace{2}{2} \operatorname{H}_{2} \operatorname{O}(g)$

"For every 1 mol CH_4 , we need to react with 2 mol O_2 to produce 1 mol CO_2 and 2 mol H_2O ."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into **moles** first.

1. Use molar mass of CH_4 to convert from mass to moles.

2. Use 2:1 $H_2O:CH_4$ mole-mole ratio to find moles of H_2O .

3. Use molar mass of H_2O to convert from moles to mass.

5.00 g CH₄×
$$\frac{1 \mod CH_4}{16.04 \text{ g CH}_4}$$
 = 0.311₇ mol CH₄
0.311₇ mol CH₄× $\frac{2 \mod H_2O}{1 \mod CH_4}$ = 0.623₄ mol H₂O
0.623₄ mol H₂O× $\frac{18.02 \text{ g H}_2O}{1 \mod H_2O}$ = 11.2 g H₂O

+

Pouring an aqueous solution of hydrochloric acid onto a solid block of magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

C) If we produce 4.00 g H_2 gas, what mass of HCl did we need?

<u>REMEMBER</u>: We only care about the <u>ratio</u> of coefficients, so we can use mole-mole ratios to go between reactants-to-reactants, reactants-products, products-to-reactants, or products-to-products.

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

C) If we produce 4.00 g H_2 gas, what mass of HCl did we need?

<u>REMEMBER</u>: We only care about the <u>ratio</u> of coefficients, so we can use mole-mole ratios to go between reactants-to-reactants, reactants-products, products-to-reactants, or products-to-products.

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

 $3.00 \text{ mol Mg} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Mg}} = 6.00 \text{ mol HCl}$

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

C) If we produce 4.00 g H_2 gas, what mass of HCl did we need?

<u>REMEMBER</u>: We only care about the <u>ratio</u> of coefficients, so we can use mole-mole ratios to go between reactants-to-reactants, reactants-products, products-to-reactants, or products-to-products.

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

 $3.00 \text{ mol Mg} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Mg}} = 6.00 \text{ mol HCl}$

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

 $5.00 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2} \times \frac{1 \text{ mol MgCl}_2}{1 \text{ mol H}_2} \times \frac{95.21 \text{ g MgCl}_2}{1 \text{ mol MgCl}_2} = 236 \text{ g MgCl}_2$

C) If we produce 4.00 g H_2 gas, what mass of HCI did we need?

<u>REMEMBER</u>: We only care about the <u>ratio</u> of coefficients, so we can use mole-mole ratios to go between reactants-to-reactants, reactants-to-products, products-to-reactants, or products-to-products.

1 Mg (s) + 2 HCl $(aq) \rightarrow 1$ MgCl₂ (aq) + 1 H₂ (g)

A) Given 3.00 g Mg, how many moles of hydrochloric acid do we need?

 $3.00 \text{ mol Mg} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Mg}} = 6.00 \text{ mol HCl}$

B) If we produce 5.00 g H_2 gas, what mass of MgCl₂ solution is produced?

 $5.00 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2} \times \frac{1 \text{ mol MgCl}_2}{1 \text{ mol H}_2} \times \frac{95.21 \text{ g MgCl}_2}{1 \text{ mol MgCl}_2} = 236 \text{ g MgCl}_2$

C) If we produce 4.00 g H_2 gas, what mass of HCI did we need?

$$4.00 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2} \times \frac{2 \text{ mol HCl}}{1 \text{ mol H}_2} \times \frac{36.46 \text{ g HCl}}{1 \text{ mol HCl}} = 145 \text{ g HCl}$$

<u>REMEMBER</u>: We only care about the <u>ratio</u> of coefficients, so we can use mole-mole ratios to go between reactants-to-reactants, reactants-to-products, products-to-reactants, or products-to-products.

SUMMARIZING STOICHIOMETRY RELATIONSHIPS

THE MOLE IS <u>STILL</u> CENTRAL

I hope now you understand why I say to convert to moles before you do anything else. It's because a balanced chemical equation gives us **mole-to-mole ratios** that we can use to convert between one reactant/product to another reactant/product.

 $2H_2(g) + 1O_2(g) \rightarrow 2H_2O(g)$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

 $8 \mod H_2 \times \frac{2 \mod H_2 0}{2 \mod H_2} = 8 \mod H_2 0$

- B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make? $6 \mod O_2 \times \frac{2 \mod H_2 O}{1 \mod O_2} = 12 \mod H_2 O$
- C) If you have 8 moles of hydrogen <u>and</u> 6 moles of oxygen, how many moles of water can you make?

When do I know if I need to figure out the limiting reactant?

When they give you the amounts of ALL reactants.

CHOOSE THE METHOD THAT WORKS BEST FOR YOU!

• <u>METHOD 1</u>

- 1. Assume one reactant is limiting and then determine amount of product you can form. $8 \mod H_2 \times \frac{2 \mod H_2 O}{2 \mod H_2} = 8 \mod H_2 O$
- 2. Assume *other* reactant is limiting and then determine amount of product you can form. $6 \mod O_2 \times \frac{2 \mod H_2 O}{1 \mod O_2} = 12 \mod H_2 O$
- 3. Reactant that *limits* amount of products formed is <u>limiting reactant</u>.

H₂ produces less H₂O so it is limiting.

• <u>METHOD 2</u>

- 1. Start with one reactant and determine how much of the other reactant you <u>need</u>. $8 \mod H_2 \times \frac{1 \mod O_2}{2 \mod H_2} = 4 \mod O_2$
- Compare what you *have* vs. what you *need*: *Have*: 6 mol O₂ *Need*: 4 mol O₂
- 3. We <u>have</u> more O_2 than we <u>need</u>
 - $\rightarrow O_2 \text{ excess}$
 - \rightarrow H₂ is limiting.