EXAM 1 Review Session

DR. MIOY T. HUYNH
YALE UNIVERSITY CHEMISTRY 161

FALL 2018
www.mioy.org/chem161

OUTLINE

1. Significant Figures
2. Dimensional Analysis
3. Elements and Atoms
4. Naming Compounds
5. The Mole: Atomic Mass, Molar Mass, and Avogadro's Number
6. Chemical Composition: Mass Percent, Empirical/Molecular Formulas
7. Balancing Chemical Equations
8. Stoichiometry and Mole-Mole Ratios
9. Limiting Reactants \& Yields

Counting Significant Figures

- Nonzero numbers are always significant

What about zeroes?

- Leading zeroes
- Captive/trapped zeroes
= not significant
= significant
- Trailing zeroes (after decimal) = significant

0.0003040 meters

Calculations with Significant Figures

ROUND AT THE END

Multiplication/Division:
number with less significant figures

Addition/Subtraction:
the less precise
number

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division:
number with less significant figures

$$
\frac{2.7991}{4.22}=0.663294
$$

$$
7.23+70+3.7795=81.0795
$$

Addition/Subtraction:
the less precise number

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division:
number with less significant figures

$$
\frac{2.7991}{4.22}=0.663294=0.663
$$

$$
7.23+70+3.7795=81.0795
$$

Addition/Subtraction:
the less precise number

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division:
number with less significant figures

$$
\frac{2.7991}{4.22}=0.663294=0.663
$$

$$
7.23+70+3.7795=81.0795=80
$$

Addition/Subtraction: the less precise number

Calculations with Significant Figures

ROUND AT THE END Examples:

Multiplication/Division:
number with less significant figures

$$
\frac{2.7991}{4.22}=0.663294=0.663
$$

$$
7.23+70+3.7795=81.0795=80
$$

Addition/Subtraction: the less precise number

$$
\frac{4.771+2.3}{3.12}=2.26634615=2.3
$$

Back to the Basics: Fractions

We can do these types of calculations already

$$
\begin{gathered}
\frac{4}{9} \times \frac{1}{6}=\frac{4}{54}=\frac{2}{27} \\
\frac{4}{5} \times \frac{3}{4} \times \frac{5}{2}=\frac{3}{2}
\end{gathered}
$$

Back to the Basics: Fractions

We can do these types of calculations already

$$
\begin{gathered}
\frac{4}{9} \times \frac{1}{6}=\frac{4}{54}=\frac{2}{27} \\
\frac{A}{5} \times \frac{3}{A} \times \frac{5}{2}=\frac{3}{2}
\end{gathered}
$$

Back to the Basics: Fractions

We can do these types of calculations already

$$
\begin{gathered}
\frac{4}{9} \times \frac{1}{6}=\frac{4}{54}=\frac{2}{27} \\
\frac{A}{B} \times \frac{3}{A} \times \frac{B}{2}=\frac{3}{2}
\end{gathered}
$$

Extend Fractions to Multiplying Units

Unit conversion is just multiplying fractions!

$$
\frac{A}{B} \times \frac{3}{A} \times \frac{5}{2}=\frac{3}{2}
$$

$$
\frac{\text { centimeter }}{\text { seconds }} \times \frac{\text { meter }}{\text { centimeter }} \times \frac{\text { kilometer }}{\text { meter }}=\frac{\text { kilometer }}{\text { second }}
$$

Extend Fractions to Multiplying Units

Unit conversion is just multiplying fractions!

$$
\frac{A}{B} \times \frac{3}{A} \times \frac{5}{2}=\frac{3}{2}
$$

$$
\frac{\text { centimeter }}{\text { seconds }} \times \frac{\text { méter }}{\text { centimeter }} \times \frac{\text { kilometer }}{\text { meter }}=\frac{\text { kilometer }}{\text { second }}
$$

The Atom

PARTICLE	MASS	CHARGE
Electron	$9.11 \times 10^{-31} \mathrm{~kg}$	$1-$
Proton	$1.67 \times 10^{-27} \mathrm{~kg}$	$1+$
Neutron	$1.67 \times 10^{-27} \mathrm{~kg}$	0
The nucleus is verydense:		
A proton/neutron is ~ 2000 times		
heavier than an electron		

Atomic Symbols

${ }_{11}^{23} \mathrm{Na}$

Atomic Symbols: Practice Problems

SYMBOL	${ }_{30}^{64} \mathrm{Zn}$	${ }_{16}^{32} \mathrm{~S}$
\# Protons		40
\# Neutrons		50
\# Electrons	40	
Mass Number	90	

	MASS NUMBER (A) protons + neutrons
K	\downarrow
\# NEUTRONS $=A-Z$	$\begin{aligned} & A \\ & 7 \end{aligned}$
	\uparrow
	ATOMIC NUMBER (Z) \# of protons \# of electrons

Atomic Symbols:
 Practice Problems

SYMBOL	64 30 Zn	32 16 S	90 40 Zr
\# Protons	30	16	40
\# Neutrons	34	16	50
\# Electrons	30	16	40
Mass Number	64	32	90

MASS NUMBER (A) protons + neutrons	
$/$	\downarrow
\# NEUTRONS = A - Z	$\begin{aligned} & A \\ & 7 \end{aligned}$
	\uparrow
A^{-}	ATOMIC NUMBER (Z) \# of protons \# of electrons

Atomic Symbols:
 Practice Problems

SYMBOL	${ }_{30}^{64} \mathrm{Zn}$	32 16 S	90 40 Zr
\# Protons	30	16	40
\# Neutrons	34	16	50
\# Electrons	30	16	40
Mass Number	64	32	90
SYMBOL	${ }_{30}^{64} \mathrm{Zn}^{2+}$	$32 \mathrm{~S}^{-}$	${ }^{9} 0 \mathrm{Zr}^{4+}$

\# Protons
\# Neutrons
\# Electrons

Mass Number

Atomic Symbols:
 Practice Problems

SYMBOL	64 30 Zn	32 16 S	90 40 Zr
\# Protons	30	16	40
\# Neutrons	34	16	50
\# Electrons	30	16	40
Mass Number	64	32	90
SYMBOL	${ }_{30}^{64} \mathrm{Zn}^{2+}$	${ }_{32}^{32} \mathrm{~S}^{-}$	$90 \mathrm{Zr}^{4+}$
\# Protons	30	16	40
\# Neutrons	34	16	50
\# Electrons			
Mass Number	64	32	90

Atomic Symbols:
 Practice Problems

SYMBOL	${ }_{30}^{64} \mathrm{Zn}$	32 16 S	${ }_{40}^{90} \mathrm{Zr}$
\# Protons	30	16	40
\# Neutrons	34	16	50
\# Electrons	30	16	40
Mass Number	64	32	90
SYMBOL	${ }_{30}^{64} \mathrm{Zn}^{2+}$	${ }^{32} \mathrm{ln}^{-}$	$\mathrm{S}^{90} \mathrm{Zn}^{4+}$
\# Protons	30	16	40
\# Neutrons	34	16	50
\# Electrons	28	18	36
Mass Number	64	32	90

General Rules for Naming Compounds

- Metal + Nonmetal
- Cation + Anion
- Must be neutral overall!

Naming:

- Cation + Anion Root + "-ide" $\mathrm{NaCl} \rightarrow$ Sodium Chloride
- Nonmetal + Nonmetal

Naming:

- $1^{\text {st }}$ element: full name
- $2^{\text {nd }}$ element: root + "-ide"

- Use prefixes (Table 2.2)
$\mathrm{BF}_{3} \rightarrow$ Boron Trifluoride

General Rules for Naming Compounds

- Metal + Nonmetal
- Cation + Anion

IONIC

- Must be neutral overall!

Naming:

- Cation + Anion Root + "-ide"
$\mathrm{NaCl} \rightarrow$ Sodium Chloride
- Nonmetal + Nonmetal

Naming:

- $1^{\text {st }}$ element: full name
- $2^{\text {nd }}$ element: root + "-ide"
- Use prefixes (Table 2.2)
$\mathrm{BF}_{3} \rightarrow$ Boron Trifluoride

More exotic rules

- Transition metals require charge Hint: Find charge of anion first!
- Cation + Charge + Anion Root + "-ide"
$\mathrm{FeCl}_{2} \rightarrow$ Iron (II) Chloride
$\mathrm{PbO}_{2} \rightarrow$ Lead (IV) Oxide
- Polyatomics are "one ion" (Table 2.3) AgCN \rightarrow Silver (I) Cyanide

More exotic rules

- Don't use "mono-" for first atom

NO \rightarrow Nitrogen Monoxide

- Drop "extra" vowels
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow$ Dinitrogen Pentoxide
- Oxoanions: -ate has more O's than -ite
$\mathrm{NO}_{3}{ }^{-} \rightarrow$ Nitrate
$\mathrm{NO}_{2}{ }^{-} \rightarrow$ Nitrite

How should I think about atomic mass?

- Atoms are very small and very light
- Periodic table reports the measured average atomic mass
- 1 hydrogen atom = 1.008 amu (atomic mass unit)
- Makes it really impractical to work with in a laboratory/life

Convince yourself of this:

The mass of one atom (even one molecule) is horribly small.
For instance: 1 H atom weighs 1.674×10^{-24} grams
Recognize this is not a useful unit to use in life!

How should I think about atomic mass?

- Ask yourself: If an amu is useless, what units do we want to use for mass? [Answer: grams]
- So, we would like if: H: 1.008 amu means 1.008 g

C: 12.01 amu means 12.01 g

- But how...?

How should I think about atomic mass?

- Eventually you will put enough atoms to achieve a reading of 1.008 g for hydrogen and 12.01 g for carbon. In other words:

	1 atom	" x " atoms
\mathbf{H}	1.008 amu	1.008 g
\mathbf{C}	12.01 amu	12.01 g

How should I think about atomic mass?

- Eventually you will put enough atoms to achieve a reading of 1.008 g for hydrogen and 12.01 g for carbon. In other words:

	$\mathbf{1}$ atom	" \mathbf{x} " atoms
\mathbf{H}	1.008 amu	1.008 g
\mathbf{C}	12.01 amu	12.01 g

- But how many atoms (" x ") did we need to get that mass in g ?

How should I think about atomic mass?

- Eventually you will put enough atoms to achieve a reading of 1.008 g for hydrogen and 12.01 g for carbon. In other words:

	$\mathbf{1}$ atom	" \mathbf{x} " atoms
\mathbf{H}	1.008 amu	1.008 g
\mathbf{C}	12.01 amu	12.01 g

- But how many atoms (" x ") did we need to get that mass in g ?

$$
1.008 \mathrm{~g} \mathrm{H} \times \frac{1 \text { atom } \mathrm{H}}{1.674 \times 10^{-24} \mathrm{~g}}=\underset{\leftarrow}{6.022 \times 10^{23} \text { atoms } \mathrm{H}}
$$

Avogadro's Number $=6.022 \times 10^{23}$ and the MOLE

- Avogadro's number is what connects the atomic masses (in amu) to masses in grams! So...

$$
\begin{aligned}
1.008 \mathrm{~g} \mathrm{H} & =6.022 \times 10^{23} \text { atoms } \mathrm{H} \\
12.01 \mathrm{~g} \mathrm{C} & =1 \mathrm{~mol} \mathrm{H} \\
16.00 \mathrm{~g} \mathrm{O} & =6.022 \times 10^{23} \text { atoms } \mathrm{C}=10^{23} \text { atoms } \mathrm{O}=1 \mathrm{~mol} \mathrm{O} \\
14.01 \mathrm{~g} \mathrm{~N} & =6.022 \times 10^{23} \text { atoms } \mathrm{N}
\end{aligned}=1 \mathrm{~mol} \mathrm{~N}
$$

- Take-home message: The units on the periodic table that are useful are $\mathrm{g} / \mathrm{mol}$ (molar mass). Often, we are dealing with large numbers of atoms/molecules, so $\mathrm{g} / \mathrm{mol}$ is easier to deal with.

How many atoms of $\mathbf{M g}$ are in $\mathbf{1 0 . 0} \mathbf{~ g ~ M g ? ~}$

How many atoms of $\mathbf{M g}$ are in 10.0 g Mg ?

The molar mass of Mg is $24.31 \mathrm{~g} / \mathrm{mol}$.
Let's do it in steps just for clarity.
First, convert mass to moles using molar mass of Mg:

$$
10.0 \mathrm{gMg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}=0.411_{4} \mathrm{~mol} \mathrm{Mg}
$$

Second, convert moles to atoms using Avogadro's number:

$$
0.411_{4} \mathrm{~mol} \mathrm{Mg} \times \frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=2.48 \times 10^{23} \text { atoms } \mathrm{Mg}
$$

Everything in one giant conversion:

$$
10.0 \mathrm{gMg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=2.48 \times 10^{23} \text { atoms } \mathrm{Mg}
$$

SUMMARY: MOLE IS CENTRAL

Which has more atoms?

2 kg of Cu or $\mathbf{2 ~ k g ~ M g ~}$

Which has more atoms?

2 kg of Cu or $\mathbf{2 ~ k g ~ M g ~}$

The atomic mass of Cu is 63.55 amu .
The atomic mass of Mg is 24.31 amu .
\rightarrow Since each atom of Mg weighs less (1 atom $\mathrm{Mg}=24.31 \mathrm{amu}$), it will take more atoms of Mg to reach 2 kg of Mg .

Avogadro's number also applies to molecules/compounds

- Similar to how we don't really encounter the mass of one atom, we rarely encounter the mass of one molecule in real life.
- Again, these masses would be very small numbers.
- For compounds or molecules, we also work in moles.
- The mass of 1 mole of a compound:

Ex.) The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} / \mathrm{mol}$.

1 molecule $\mathrm{H}_{2} \mathrm{O}$	$\rightarrow 2$ atoms $\mathrm{H}+1$ atom O
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$\rightarrow 2 \mathrm{~mol} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$=2(1.008 \mathrm{~g})+1(16.00 \mathrm{~g})=18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Find the molar mass of ammonium carbonate.

Find the molar mass of ammonium carbonate.

First, write the formula: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=2 \mathrm{molN}+8 \mathrm{molH}+1 \mathrm{molC}+3 \mathrm{molO}$

Find the molar mass of ammonium carbonate.

First, write the formula: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=2 \mathrm{molN}+8 \mathrm{molH}+1 \mathrm{molC}+3 \mathrm{molO}$

$$
\begin{array}{ll}
2 \mathrm{~mol} \mathrm{~N} & \rightarrow 2 \mathrm{~mol} \mathrm{~N} \times \frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}=28.02 \mathrm{~g} \mathrm{~N} \\
8 \mathrm{~mol} \mathrm{H} & \rightarrow 8 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=8.064 \mathrm{~g} \mathrm{H} \\
1 \mathrm{~mol} \mathrm{C} & \rightarrow 1 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=12.01 \mathrm{~g} \mathrm{C} \\
3 \mathrm{~mol} \mathrm{O} & \rightarrow 3 \mathrm{~mol} \mathrm{O} \times \frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=\frac{48.00 \mathrm{~g} \mathrm{O}}{96.09 \mathrm{~g}}
\end{array}
$$

$$
\begin{aligned}
& 1 \mathrm{~mol}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=2 \mathrm{~mol} \mathrm{~N}+8 \mathrm{~mol} \mathrm{H}+1 \mathrm{~mol} \mathrm{C}+3 \mathrm{~mol} \mathrm{O} \\
&=2(14.01 \mathrm{~g})+8(1.008 \mathrm{~g})+1(12.01 \mathrm{~g})+3(16.00 \mathrm{~g}) \\
&=96.09 \mathrm{~g}
\end{aligned}
$$

SUMMARY: MOLE IS CENTRAL

How many molecules are in a 50.0 g sample of ammonium carbonate?

The molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is $96.09 \mathrm{~g} / \mathrm{mol}$.
The procedure is similar to what we did for atoms, but now use molecules.
First, convert from mass to number of moles using the molar mass:

$$
50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=0.520_{3} \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

Second, convert moles to number of molecules using Avogadro's number:

$$
0.520_{3} \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=3.13 \times 10^{23} \text { molecules }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

How many molecules are in a 50.0 g sample of ammonium carbonate?

The molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is $96.09 \mathrm{~g} / \mathrm{mol}$.
The procedure is similar to what we did for atoms, but now use molecules.
First, convert from mass to number of moles using the molar mass:

$$
50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=0.520_{3} \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

Second, convert moles to number of molecules using Avogadro's number:

$$
0.520_{3} \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=3.13 \times 10^{23} \text { molecules }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

Everything in one giant conversion:
$50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=3.13 \times 10^{23}$ molecules $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

How many hydrogen atoms are in a 50.0 g sample of ammonium carbonate?

The molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is $96.09 \mathrm{~g} / \mathrm{mol}$.
The procedure is similar to what we did for atoms, but now use molecules.
$50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=3.13 \times 10^{23}$ molecules $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

How many hydrogen atoms are in a 50.0 g sample of ammonium carbonate?

The molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is $96.09 \mathrm{~g} / \mathrm{mol}$.
The procedure is similar to what we did for atoms, but now use molecules.
$50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=3.13 \times 10^{23}$ molecules $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Remember that:

- 1 molecule of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=2$ atoms $\mathrm{N}+8$ atoms $\mathrm{H}+1$ atom $\mathrm{C}+3$ atoms O
- 1 mole $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=2$ mole $\mathrm{N}+8 \mathrm{~mole} \mathrm{H}+1 \mathrm{~mole} \mathrm{C}+3$ mole O

How many hydrogen atoms are in a 50.0 g sample of ammonium carbonate?

The molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ is $96.09 \mathrm{~g} / \mathrm{mol}$.
The procedure is similar to what we did for atoms, but now use molecules.
$50.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{96.09 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}=3.13 \times 10^{23}$ molecules $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Remember that:

- 1 molecule of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=2$ atoms $\mathrm{N}+8$ atoms $\mathrm{H}+1$ atom $\mathrm{C}+3$ atoms O
- 1 mole $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=2$ mole $\mathrm{N}+8 \mathrm{~mole} \mathrm{H}+1 \mathrm{~mole} \mathrm{C}+3$ mole O

So:

$$
3.13_{4} \times 10^{23} \text { molecules }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{8 \text { atoms } \mathrm{H}}{1 \text { molecule }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=2.51 \times 10^{24} \text { atoms } \mathrm{H}
$$ greatest number of oxygen atoms?

Magnesium nitrate

Dinitrogen pentoxide

Iron(III) phosphate

Barium oxide

Potassium acetate

If you have equal mole samples of each compound, which contains the

 greatest number of oxygen atoms?| Magnesium nitrate | Formula
 $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ | Moles of O |
| :--- | :--- | :--- |
| Dinitrogen pentoxide | $\mathrm{N}_{2} \mathrm{O}_{5}$ | |
| Iron(III) phosphate | FePO_{4} | |
| Barium oxide | BaO | |
| Potassium acetate | $\mathrm{KCH}_{3} \mathrm{CO}_{2}$ | |

If you have equal mole samples of each compound, which contains the

 greatest number of oxygen atoms?| Magnesium nitrate | Formula
 $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ | Moles of O
 Dinitrogen pentoxide |
| :--- | :--- | :--- |
| Iron(III) phosphate | $\mathrm{N}_{2} \mathrm{O}_{5}$ | 5 mol O |
| Barium oxide | FePO_{4} | 4 mol O |
| Potassium acetate | BaO | 1 mol O |
| | $\mathrm{KCH}_{3} \mathrm{CO}_{2}$ | 2 mol O |

Introduction to mass percent

CHEMISTS CARE ABOUT MASS PERCENT!

$$
\% \text { Mass }=\frac{\text { mass part }}{\text { mass whole }} \times 100 \%
$$

How do I calculate the mass percentages for $1 \mathrm{~mol} \mathrm{CH}_{4}$?

- Remember that the molar mass of CH_{4} is $16.04 \mathrm{~g} / \mathrm{mol}$:
$1 \mathrm{~mol} \mathrm{CH}_{4}=1 \mathrm{molC}+4 \mathrm{~mol} \mathrm{H}$

$$
=1(12.01 \mathrm{~g})+4(1.008 \mathrm{~g})=16.04 \mathrm{~g}
$$

$$
\% \text { Mass }=\frac{\text { mass part }}{\text { mass whole }} \times 100 \%
$$

$$
\% \mathrm{C} \rightarrow \frac{1(12.01) \mathrm{g}}{16.04 \mathrm{~g}} \times 100 \%=74.90 \% \mathrm{C}
$$

$$
\% \mathrm{H} \rightarrow \frac{4(1.008) \mathrm{g}}{16.04 \mathrm{~g}} \times 100 \%=\frac{25.10 \% \mathrm{H}}{100.0 \% \text { total }}
$$

How do I calculate the mass percentages for $2 \mathrm{~mol} \mathrm{CH}_{4}$?

- The molar mass of CH_{4} is $16.04 \mathrm{~g} / \mathrm{mol}$, but now:

$$
\begin{aligned}
2 \mathrm{~mol} \mathrm{CH}_{4} & =2 \mathrm{~mol} \mathrm{C} \\
& =2(12.01 \mathrm{~g})+8(1.008 \mathrm{gol} \mathrm{H} \\
& =32.08 \mathrm{~g}
\end{aligned}
$$

$$
\% \text { Mass }=\frac{\text { mass part }}{\text { mass whole }} \times 100 \%
$$

$$
\% \mathrm{C} \rightarrow \frac{2(12.01) \mathrm{g}}{32.08 \mathrm{~g}} \times 100 \%=74.90 \% \mathrm{C}
$$

$$
\% \mathrm{H} \rightarrow \frac{8(1.008) \mathrm{g}}{32.08 \mathrm{~g}} \times 100 \%=\frac{25.10 \% \mathrm{H}}{100.0 \% \mathrm{total}}
$$

Percent composition is independent of the starting amount!

This is why we usually assume we have 100 g or 1 mol .
These are just super easy numbers to work with.

Note: If you wanted to use a strange amount, like 0.27 mol or 74.5 g of substance, your answers would be the same but the math isn't as convenient. BUT you'll still be right. :)

What is the mass percent of nitrogen in barium nitrate?

What is the mass percent of nitrogen in barium nitrate?

First, write the formula: $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
Second, determine the molar mass $=261.35 \mathrm{~g} / \mathrm{mol}$

What is the mass percent of nitrogen in barium nitrate?

First, write the formula: $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
Second, determine the molar mass $=261.35 \mathrm{~g} / \mathrm{mol}$

We know that there are 2 mol N for 1 mol of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, so:

$$
\frac{2(14.01) \mathrm{g}}{261.35 \mathrm{~g}} \times 100 \%=10.72 \% \mathrm{~N}
$$

If you have equal mass samples of each compound, which contains the greatest number of oxygen atoms?

Magnesium nitrate	$\frac{\text { Formula }}{\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}$
Dinitrogen pentoxide	$\mathrm{N}_{2} \mathrm{O}_{5}$
Iron(III) phosphate	FePO_{4}
Barium oxide	BaO
Potassium acetate	$\mathrm{KCH}_{3} \mathrm{CO}_{2}$

If you have equal mass samples of each compound, which contains the greatest number of oxygen atoms?

Magnesium nitrate	Formula ${\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}^{\mathrm{N}_{2} \mathrm{O}_{5}}$	One way to solve this is to assume you have 100 g of each compound, then find the total number of O atoms in each compound.
Iron(III) phosphate	FePO_{4}	BaO
Barium oxide	$\mathrm{KCH}_{3} \mathrm{CO}_{2}$	This is a lot of work though!
Potassium acetate		Consider mass percentages!

If you have equal mass samples of each compound, which contains the greatest number of oxygen atoms?

	Formula Mg Magnesium nitrate $)_{2}$					$\frac{6(16.00 \mathrm{~g})}{148.33 \mathrm{~g}} \times 100 \%=64.72 \% \mathrm{O}$
Dinitrogen pentoxide	$\mathrm{N}_{2} \mathrm{O}_{5}$	$\frac{5(16.00 \mathrm{~g})}{108.02 \mathrm{~g}} \times 100 \%=74.06 \% \mathrm{O}$				
Iron(III) phosphate	FePO_{4}	$\frac{4(16.00 \mathrm{~g})}{150.82 \mathrm{~g}} \times 100 \%=42.43 \% \mathrm{O}$				
Barium oxide	BaO	$\frac{1(16.00 \mathrm{~g})}{153.3 \mathrm{~g}} \times 100 \%=10.4 \% \mathrm{O}$				
Potassium acetate	$\mathrm{KCH}_{3} \mathrm{CO}_{2}$	$\frac{2(16.00 \mathrm{~g})}{98.14 \mathrm{~g}} \times 100 \%=32.61 \% \mathrm{O}$				

Most often, we use mass percentages to help us figure out what compound we have.

These are called EMPIRICAL FORMULAS.

 what it is (both formula and name). You know that it's 46.7% nitrogen by mass.- We want to know: $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?
- Remember: the amount doesn't matter for percent composition!
- Let's assume we have 100 g of our $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$.
- This means that for every 100 g of $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$, we have:
- 46.7 g of N
- 53.3 g of O what it is (both formula and name). You know that it's 46.7% nitrogen by mass.
- We want to know: $\mathrm{N}_{x} \mathrm{O}_{\mathrm{y}}=$ formula? name?

We must convert the masses to moles.

$$
\begin{aligned}
& \mathrm{N} \rightarrow 46.7 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=3.33 \mathrm{~mol} \mathrm{~N} \\
& \mathrm{O} \rightarrow 53.3 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=3.33 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

You have some "nitrogen oxide" compound and you want to figure out

 what it is (both formula and name). You know that it's 46.7\% nitrogen by mass.- We want to know:
$\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?

We need the simplest whole number ratio!

$$
\begin{aligned}
& \mathrm{N} \rightarrow 46.7 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=3.33 \mathrm{~mol} \mathrm{~N} \rightarrow \frac{3.33 \mathrm{~mol} \mathrm{~N}}{3.33}=1 \mathrm{~N} \\
& \mathrm{O} \rightarrow 53.3 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=3.33 \mathrm{~mol} \mathrm{O} \rightarrow \frac{3.33 \mathrm{~mol} \mathrm{O}}{3.33}=10
\end{aligned}
$$

Divide the number of moles by the SMALLEST value!

You have some "nitrogen oxide" compound and you want to figure out

 what it is (both formula and name). You know that it's 46.7\% nitrogen by mass.- We want to know:
$\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?

We need the simplest whole number ratio!

$$
\begin{aligned}
& \mathrm{N} \rightarrow 46.7 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=3.33 \mathrm{~mol} \mathrm{~N} \rightarrow \frac{3.33 \mathrm{~mol} \mathrm{~N}}{3.33}=1 \mathrm{~N} \\
& \mathrm{O} \rightarrow 53.3 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=3.33 \mathrm{~mol} \mathrm{O} \rightarrow \frac{3.33 \mathrm{~mol} \mathrm{O}}{3.33}=10
\end{aligned}
$$

Empirical Formula:
NO | Nitrogen Monoxide

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
$\mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al}$
$0 \rightarrow 36.92 \mathrm{go}$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.

$$
\begin{aligned}
& \mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \\
& 0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.

$$
\begin{aligned}
& \text { Al } \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} \\
& 0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}=1.5 \mathrm{O}
\end{aligned}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.
4. Write empirical formula from simplest whole number ratio.

$$
\begin{array}{ll}
\mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{ll}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} & \begin{array}{c}
\text { Uh... these } \\
\text { aren't whole }
\end{array} \\
0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}=1.50 \quad \text { numbers! }
\end{array}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.
4. Write empirical formula from simplest whole number ratio.

$$
\begin{aligned}
\mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} \times 2 \rightarrow 2 \mathrm{Al} \\
0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}=\begin{array}{r}
1.50 \times 2 \rightarrow 30 \\
\text { Multiply to get } \\
\text { whole numbers! }
\end{array}
\end{aligned}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.
4. Write empirical formula from simplest whole number ratio.

$$
\begin{aligned}
& \text { Al } \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} \times 2 \rightarrow 2 \mathrm{Al} \\
& 0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}=1.5 \mathrm{O} \times 2 \rightarrow 30
\end{aligned}
$$

Calculate the empirical formula for a halohydrocarbon if it is

 71.65\% CI, 24.27\% C, and 4.07\% H by mass.Assuming a 100 g sample of the halohydrocarbon $\left(\mathrm{Cl}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)$:

$$
\begin{array}{ll}
\mathrm{Cl} \rightarrow 71.65 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=2.021 \mathrm{~mol} \mathrm{Cl} & \rightarrow \frac{2.021 \mathrm{~mol} \mathrm{Cl}}{2.021}=1 \mathrm{Cl} \\
\mathrm{C} \rightarrow 24.27 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=2.021 \mathrm{~mol} \mathrm{C} & \rightarrow \frac{2.021 \mathrm{~mol} \mathrm{C}}{2.021}=1 \mathrm{C} \\
\mathrm{H} \rightarrow 4.07 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=4.04 \mathrm{~mol} \mathrm{H} & \rightarrow \frac{4.04 \mathrm{~mol} \mathrm{H}}{2.021}=2 \mathrm{H}
\end{array}
$$

The empirical formula is ClCH_{2}.

Determine the molecular formula for the same halohydrocarbon if it has a molar mass of $98.96 \mathrm{~g} / \mathrm{mol}$.

We determined previously that the empirical formula is ClCH_{2}.
The empirical formula mass is $49.48 \mathrm{~g} / \mathrm{mol}$.

The molecular formula is always a multiple of the empirical formula. So: $\left(\mathrm{CICH}_{2}\right)_{n}$

We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

$$
n=\frac{\text { Molar mass }}{\text { Empirical formula mass }}=\frac{98.96 \mathrm{~g}}{49.48 \mathrm{~g}}=2
$$

The molecular formula is $\left(\mathrm{ClCH}_{2}\right)_{2}$ or $\mathrm{Cl}_{2} \mathrm{C}_{2} \mathrm{H}_{4}$.

A compound containing only sulfur and nitrogen is $69.6 \% \mathrm{~S}$ by mass. If its molar mass is $184 \mathbf{g} / \mathrm{mol}$, what is the correct name for it?

First, determine the empirical formula and empirical formula mas:

$$
\begin{array}{ll}
\mathrm{S} \rightarrow 69.6 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.06 \mathrm{~g} \mathrm{~S}}=2.17 \mathrm{~mol} \mathrm{~S} & \rightarrow \frac{2.17 \mathrm{~mol} \mathrm{~S}}{2.17}=1 \mathrm{~S} \\
\mathrm{~N} \rightarrow \quad 30.4 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=2.17 \mathrm{~mol} \mathrm{~N} & \rightarrow \frac{2.17 \mathrm{~mol} \mathrm{~N}}{2.17}=1 \mathrm{~N}
\end{array}
$$

So the empirical formula is SN and the empirical mass is 46.07 g .
We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

$$
n=\frac{\text { Molar mass }}{\text { Empirical formula mass }}=\frac{184 \mathrm{~g}}{46.07 \mathrm{~g}}=4
$$

The molecular formula is $(\mathrm{SN})_{4}$ or $\mathrm{S}_{4} \mathrm{~N}_{4}$ or tetrasulfur tetranitride.

MASS SPECTROMETRY

The peak farthest to the right (the one with the largest m / z value) tells you the estimated molecular mass of the compound.

Ex) Acetic Acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$,

Molecular Mass $=60.05 \mathrm{~g} / \mathrm{mol}$

Notes you don't need to know:

- The other peaks are broken fragments of the molecule.
- The height tells you the abundance of a fragment.
- We use mass spec. to identify elements with near-even (50\%:50\%) ratio of isotopes, like ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$.

What do chemical equations tell us?

- Formulas for the reactants (left side)
- Formulas for the products (right side)
- Phases, most of the time
- Relative amounts of reactants of reactants and products

REACTANT \rightarrow PRODUCTS

What does it mean to be "balanced"?

- Same number of each type of atom on the left (reactants) and right (products) side.
- Law of Conservation of Mass

REACTANT \rightarrow PRODUCTS

How do we balance chemical equations?

- Mainly trial-and-error (some general strategies though).
- Make sure you have the same number of each type of atom on both sides of the equation.
- Do NOT balance by changing subscripts! Seriously, don't.
- Balance the most complicated molecule first.

REACTANT \rightarrow PRODUCTS

What makes a chemical reaction?

Hydrogen gas and oxygen gas react to form water vapor.
(words) hydrogen gas + oxygen gas \rightarrow water vapor

(drawings)	∞	+	∞	\rightarrow	0_{0}		$20 \text { atoms } 10 \text { atoms }$	
							Reactants	Products
	$\infty \quad \infty$	+	$\infty \infty$	\rightarrow	0_{0}	0_{0}	4 H atoms	4 H atoms
							4 O atoms	40 atoms
(equation)	$2 \mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{H}_{2}$	(g)	Pictures ar convenien	en't always though..

How do I read a chemical equation?

- Subscripts are not conserved!
- Coefficients have no real meaning by themselves...
- RATIO of coefficient is what's important.
- Read it like a recipe:
"For every $2 \mathrm{H}_{2}$ molecules, we need $1 \mathrm{O}_{2}$ molecule to produce $2 \mathrm{H}_{2} \mathrm{O}$ molecules."

Write a balanced chemical equation for ammonia synthesis from nitrogen and hydrogen gases.

Write a balanced chemical equation for

 ammonia synthesis from nitrogen and hydrogen gases.Write out the core of the equation from the description:

$$
\underline{1} \mathrm{~N}_{2}(g)+\underline{3} \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

"To make 2 moles NH_{3}, we need 1 mole N_{2} and 3 moles H_{2}."

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\ldots \mathrm{CH}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow _\mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

WHAT IS A COMBUSTION REACTION?

When we "burn" a hydrocarbon (a compound with C, H, and/or O atoms), it always reacts with O_{2} gas in the air to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ gases as products.

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:

$$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_{4} to convert from mass to moles. $\quad 5.00 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}=0.311_{7} \mathrm{~mol} \mathrm{CH}_{4}$

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

$$
\begin{aligned}
& \text { Write out the core of the equation from the description: } \\
& \qquad 1 \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_{4} to convert from mass to moles.
2. Use 2:1 $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{4}$ mole-mole ratio to find moles of $\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
& 5.00 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}=0.311_{7} \mathrm{~mol} \mathrm{CH}_{4} \\
& 0.311_{7} \mathrm{~mol} \mathrm{CH}_{4} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CH}_{4}}=0.623_{4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

If 5.00 g of CH_{4} (methane) is burned, what mass of water can be produced?

Write out the core of the equation from the description:
 $$
\underline{1} \mathrm{CH}_{4}(\mathrm{~g})+\underline{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{1} \mathrm{CO}_{2}(\mathrm{~g})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

"For every $1 \mathrm{~mol} \mathrm{CH}_{4}$, we need to react with $2 \mathrm{~mol} \mathrm{O}_{2}$ to produce $1 \mathrm{~mol} \mathrm{CO}_{2}$ and $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$."

REMEMBER MY TIP: If you don't know how to start a problem, convert whatever they give you into moles first.

1. Use molar mass of CH_{4} to convert from mass to moles.
2. Use 2:1 $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{4}$ mole-mole ratio to find moles of $\mathrm{H}_{2} \mathrm{O}$.
3. Use molar mass of $\mathrm{H}_{2} \mathrm{O}$ to convert from moles to mass.

$$
\begin{aligned}
& 5.00 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}=0.311_{7} \mathrm{~mol} \mathrm{CH}_{4} \\
& 0.311_{7} \mathrm{~mol} \mathrm{CH}_{4} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CH}_{4}}=0.623_{4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& 0.623_{4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=11.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.
A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?
B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?
C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+1 \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?
B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?
C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
\underline{1} \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+\ldots \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?

$$
3.00 \mathrm{~mol} \mathrm{Mg} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}}=6.00 \mathrm{~mol} \mathrm{HCl}
$$

B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?
C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(\mathrm{aq}) \rightarrow \underline{1} \mathrm{MgCl}_{2}(\mathrm{aq})+\underline{1} \mathrm{H}_{2}(\mathrm{~g})
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?

$$
3.00 \mathrm{~mol} \mathrm{Mg} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}}=6.00 \mathrm{~mol} \mathrm{HCl}
$$

B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?

$$
5.00 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{95.21 \mathrm{~g} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}=236 \mathrm{~g} \mathrm{MgCl}_{2}
$$

C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

Pouring an aqueous solution of hydrochloric acid onto a solid block of

 magnesium metal produces an aqueous solution of magnesium chloride and hydrogen gas.$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+1 \mathrm{H}_{2}(g)
$$

A) Given 3.00 g Mg , how many moles of hydrochloric acid do we need?

$$
3.00 \mathrm{~mol} \mathrm{Mg} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}}=6.00 \mathrm{~mol} \mathrm{HCl}
$$

B) If we produce $5.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of MgCl_{2} solution is produced?

$$
5.00 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{95.21 \mathrm{~g} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}=236 \mathrm{~g} \mathrm{MgCl}_{2}
$$

C) If we produce $4.00 \mathrm{~g} \mathrm{H}_{2}$ gas, what mass of HCl did we need?

$$
4.00 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{36.46 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}=145 \mathrm{~g} \mathrm{HCl}
$$

REMEMBER: We only care about the ratio of coefficients, so we can use mole-mole ratios to go between reactants-to-reactants, reactants-to-products, products-to-reactants, or products-to-products.

SUMMARIZING STOICHIOMETRY RELATIONSHIPS

THE MOLE IS STILL CENTRAL

I hope now you understand why I say to convert to moles before you do anything else. It's because a balanced chemical equation gives us mole-to-mole ratios that we can use to convert between one reactant/product to another reactant/product.

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

When do I know if I need to figure out the limiting reactant?

When they give you the amounts of ALL reactants.

$$
\underline{2} \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- METHOD 1

1. Assume one reactant is limiting and then determine amount of product you can form.

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

2. Assume other reactant is limiting and then determine amount of product you can form.

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

3. Reactant that limits amount of products formed is limiting reactant.
H_{2} produces less $\mathrm{H}_{2} \mathrm{O}$ so it is limiting.

- METHOD 2

1. Start with one reactant and determine how much of the other reactant you need. $8 \mathrm{~mol} \mathrm{H} 2 \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2}}=4 \mathrm{~mol} \mathrm{O}_{2}$
2. Compare what you have vs. what you need:

Have: $6 \mathrm{~mol} \mathrm{O}_{2}$ Need: $4 \mathrm{~mol} \mathrm{O}_{2}$
3. We have more O_{2} than we need
$\rightarrow \mathrm{O}_{2}$ excess
$\rightarrow \mathrm{H}_{2}$ is limiting.
\square

