EXAM 2 Review Session

DR. MIOY T. HUYNH
YALE UNIVERSITY CHEMISTRY 161

FALL 2018
www.mioy.org/chem161

OUTLINE

1. Concentration \& Dilutions
2. Electrolytes, Salts, \& Solubility Rules
3. Precipitation Reactions \& Acid-Base
4. Redox Reactions
5. Enthalpy, Heat, \& Heating Curves
6. Reaction Enthalpies \& Hess's Law
7. Ideal Gas Law
8. Partial Pressure
9. Gas: Speed, Diffusion, \& Effusion

Different Units of Concentration

- Molarity: $\frac{\text { moles of solute }(\mathrm{mol})}{\text { Volume solution (L) }}=\frac{\mathrm{mol}}{\mathrm{L}}=\mathrm{M}$
- PPM: $1 \mathrm{ppm}=\frac{1 \mathrm{mg} \text { solute }}{1 \mathrm{~kg} \text { solution }}$

CAN YOU CONVERT BETWEEN THESE UNITS?

- PPB: $1 \mathrm{ppm}=\frac{1 \mu \mathrm{~g} \text { solute }}{1 \mathrm{~kg} \text { solution }}$

The solution is usually water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, so remember density is:

$$
\mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}=\frac{1 \mathrm{~g}}{1 \mathrm{~mL}}=\frac{1 \mathrm{~kg}}{1 \mathrm{~L}}
$$

Determine the concentration of each solution in the correct units:

	INFORMATION	[CONCENTRATION]	M
A)	64.7 g LiCl in 250.0 mL water	$[\mathrm{LiCl}]$	
B)	$0.200 \mathrm{~mol} \mathrm{CaCl}_{2}$ in 2.00 L water	$\left[\mathrm{Cl}^{-}\right]$	
C)	$6.42 \times 10^{-2} \mathrm{mM} \mathrm{KNO}_{3}$	$\left[\mathrm{KNO}_{3}\right]$	
D)	$0.200 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in 200.0 g water	$\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$	
		$\left[\mathrm{Na}^{+}\right]$	n/a
		$\left[\mathrm{CO}_{3}^{2-}\right]$	
E)		$[i o n s]$	

I'll do parts of D for you: $0.200 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in 200.0 g water

To find the molarity (M) of $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$, I need moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the volume of water in liters:

$$
\begin{aligned}
& {\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right] }=\frac{\# \mathrm{~mol} \mathrm{Na}}{2} \text { CO } \\
& \text { Volume (L) } \\
&=\frac{0.200 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{200.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}} \\
& {\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right] }=1.00 \mathrm{M}
\end{aligned}
$$

REMEMBER

The solution is usually water
$\left(\mathrm{H}_{2} \mathrm{O}\right)$, and its density is:
$\mathrm{D}_{\mathrm{H}_{2} \mathrm{O}}=\frac{1 \mathrm{~g}}{1 \mathrm{~mL}}=\frac{1 \mathrm{~kg}}{1 \mathrm{~L}}$

To convert this concentration from M to PPM, I need the molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=105.99 \mathrm{~g} / \mathrm{mol}$:

$$
\frac{1.00 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1.00 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}} \times \frac{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=106000 \mathrm{ppm} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

To find the concentration of $\left[\mathrm{Na}^{+}\right]$in M and PPM :

$$
\frac{1.00 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1.00 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=2.00 \mathrm{M} \mathrm{Na}^{+}
$$

$$
\frac{2.00 \mathrm{~mol} \mathrm{Na}^{+}}{1.00 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}} \times \frac{22.99 \mathrm{~g} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}^{+}} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=4.60 \times 10^{4} \mathrm{ppm} \mathrm{Na}^{+}
$$

Determine the concentration of each solution in the correct units:

	INFORMATION	[CONCENTRATION]	M	PPM
A)	64.7 g LiCl in 250.0 mL water	$[\mathrm{LiCl}]$	6.11 M	259000 ppm
B)	$0.200 \mathrm{~mol} \mathrm{CaCl}_{2}$ in 2.00 L water	$\left[\mathrm{Cl}^{-}\right]$	0.200 M	7090 ppm
C)	$6.42 \times 10^{-2} \mathrm{mM} \mathrm{KNO}_{3}$	$\left[\mathrm{KNO}_{3}\right]$	$6.42 \times 10^{-5} \mathrm{M}$	6.49 ppm
D)	$0.200 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in 200.0 g water	$\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$	1.00 M	106000 ppm
		$\left[\mathrm{Na}^{+}\right]$	2.00 M	$4.60 \times 10^{4} \mathrm{ppm}$
		$\left[\mathrm{CO}_{3}^{2-}\right]$	1.00 M	$6.00 \times 10^{4} \mathrm{ppm}$
		$[\mathrm{ions}]$	3.00 M	n / a
E)	$1.25 \mathrm{M} \mathrm{HNO}^{3}$	$\left[\mathrm{H}^{+}\right]$	1.25 M	1260 ppm

Dilutions: usually adding water/changing volume

$$
\text { Concentration }=\frac{\text { moles of solute }}{\text { Volume (L) of solution }} \quad ; \quad M=\frac{\mathrm{mol}}{\mathrm{~L}}
$$

Think about what concentration means before getting into the math.

Each black dot represents a mole (the quantity/amount) add to make a solution that is $116 \mathrm{mM} \mathrm{Cl}^{-}$?

You have a 2.50 mL of a 0.559 M solution of Cl^{-}. How much water do you need to add to make a solution that is $116 \mathrm{mM} \mathrm{Cl}^{-}$?

First, find how many moles of Cl^{-}ions you have in 2.50 mL of the 0.559 M solution:

$$
\begin{aligned}
& {\left[\mathrm{Cl}^{-}\right] }=\frac{\# \mathrm{~mol} \mathrm{Cl}^{-}}{\text {Volume }(\mathrm{L})} \\
& 0.559 \mathrm{M}=\frac{\mathrm{x} \mathrm{~mol} \mathrm{Cl}}{}{ }^{-} \\
& 2.50 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \\
& \mathrm{x}=0.00139_{8} \mathrm{~mol} \mathrm{Cl}^{-}
\end{aligned}
$$

Now, figure out the total volume of a $116 \mathrm{mM} \mathrm{Cl}^{-}$solution containing this many moles of Cl^{-}ions:

$$
\begin{aligned}
{\left[\mathrm{Cl}^{-}\right] } & =\frac{\# \mathrm{~mol} \mathrm{Cl}^{-}}{\text {Volume }(\mathrm{L})} \\
116 \mathrm{mM} \times \frac{1 \mathrm{M}}{1000 \mathrm{mM}} & =\frac{0.00139_{8} \mathrm{~mol} \mathrm{Cl}^{-}}{\mathrm{V}} \\
\mathrm{~V} & =0.0120_{5} \mathrm{~L}
\end{aligned}
$$

ALTERNATIVE SOLUTION:

You can use the following equation:

$$
\begin{aligned}
\mathrm{M}_{1} \mathrm{~V}_{1} & =\mathrm{M}_{2} \mathrm{~V}_{2} \\
(0.559 \mathrm{M})(2.50 \mathrm{~mL}) & =(0.116 \mathrm{M}) \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =12.0_{5} \mathrm{~mL}
\end{aligned}
$$

But you still have to subtract at the end to find the volume of water added to the 2.50 mL of the original solution.
\therefore This is total volume! So subtract to find the amount of water added: $\mathrm{V}_{\text {added }}=12.05 \mathrm{~mL}-2.50 \mathrm{~mL}=9.55 \mathrm{~mL}$ water added.

Salts \& Solubility Rules

A salt is an ionic compound: metal + nonmetal

Some salts are soluble in water (aqueous, aq = dissociates into ions in water).
Some salts are insoluble in water (precipitate, solid, s).
Exceptions

MEMORIZE SOLUBILITY RULES:

Group 1 cations		
	NH_{4}^{+}	
	$\mathrm{NO}_{3}{ }^{-}$	
	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	
	$\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$	$\mathrm{Ag}^{+}, \mathrm{Hg}^{2+}{ }^{2+} \mathrm{Pb}^{2+}, \mathrm{Cu}^{+}$
	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$,
岃	OH^{-}	Group 1 cations, $\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{NH}_{4}^{+}$
$\xrightarrow{3}$	S^{2-}	Group 1 cations, $\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{NH}_{4}^{+}$
O	$\mathrm{CO}_{3}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{F}^{-}$	Group 1 cations, NH_{4}^{+}

Electrolytes or Not?

Electrolytes are solutions that contain ions.

Which of the following has the greatest concentration of dissolved ions?

$$
\begin{array}{lll}
0.25 \mathrm{M} \mathrm{NaBr} & 0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4} & 0.25 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}
\end{array}
$$

Which of the following has the greatest concentration of dissolved ions?

0.25 M NaBr

$0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$

$0.25 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$

These are all soluble salts!
We can represent the dissociation of each salt into its ions:

> 1 molecule $\mathrm{NaBr}=1 \mathrm{Na}^{+}+1 \mathrm{Br}^{-}$ $1 \mathrm{~mol} \mathrm{NaBr}=1 \mathrm{~mol} \mathrm{Na}^{+}+1 \mathrm{~mol} \mathrm{Br}$

$$
1 \text { molecule } \mathrm{Na}_{2} \mathrm{SO}_{4}=2 \mathrm{Na}^{+}+1 \mathrm{SO}_{4}{ }^{2-}
$$

$$
1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}=2 \mathrm{~mol} \mathrm{Na}^{+}+1 \mathrm{~mol} \mathrm{SO}_{4}^{2-}
$$

Understand that the concentration of ions would be:

$$
\begin{gathered}
1 \mathrm{NaBr}: 2 \text { ions } \\
{[\text { ions }]=2 \times 0.25 \mathrm{M}=0.50 \mathrm{M}}
\end{gathered}
$$

$$
\begin{gathered}
1 \mathrm{Na}_{2} \mathrm{SO}_{4}: 3 \text { ions } \\
\text { [ions] }=3 \times 0.25 \mathrm{M}=0.75 \mathrm{M}
\end{gathered}
$$

Guided Introduction: Precipitation Reaction

Say we mix an aqueous solution of nickel(II) chloride with an aqueous solution of sodium sulfide.

We can write the reactants of this chemical reaction:

$$
\mathrm{NiCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{~S}(a q) \rightarrow
$$

We can predict the products by exchanging the ions:

Determine the products first.
Then determine if each new product is soluble (aq) or insoluble (s)!
Don't forget to balance the chemical reaction!

$$
\underline{1} \mathrm{NiCl}_{2}(a q)+\underline{1} \mathrm{Na}_{2} \mathrm{~S}(a q) \rightarrow \underline{1} \mathrm{NiS}(s)+\underline{2} \mathrm{NaCl}(a q)
$$

Always go back to the microscopic picture of what's happening! \rightarrow NiS precipitate (solid) forms \& other ions float in solution

Guided Introduction: Precipitation Reaction

This is called a molecular equation because we keep the salts as neutral "molecules":

$$
\underline{1} \mathrm{NiCl}_{2}(\mathrm{aq})+\underline{1} \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \underline{1} \mathrm{NiS}(s)+\underline{2} \mathrm{NaCl}(a q)
$$

But we know that soluble salts (aqueous) exist as dissociated ions in solution!
It would be more accurate to dissociate the soluble salts.

We can transform the molecular equation into an complete ionic equation:

$$
\underline{1 \mathrm{Ni}^{+}}(\mathrm{aq})+2 \mathrm{CK}(\mathrm{aq})+\underline{2} \mathrm{Na}^{+}(\mathrm{aq})+\underline{1} \mathrm{~S}^{2-}(\mathrm{aq}) \rightarrow \underline{1} \mathrm{NiS}(\mathrm{~s})+\underline{2} \mathrm{Na}^{+}(\mathrm{aq})+\text { Ct }(\mathrm{aq})
$$

SPECTACTOR IONS

You may notice that some of these ions (Na^{+}and Cl^{-}) don't actually chemically react.

We can ignore these!

We can write a net ionic equation by eliminating all the spectator ions:

$$
\underline{1} \mathrm{Ni}^{+}(\mathrm{aq})+\underline{1} \mathrm{~S}^{2-}(\mathrm{aq}) \rightarrow \underline{1} \mathrm{NiS}(s)
$$

For each reaction, write out the molecular, overall ionic, and net ionic equations:

1. An aqueous solution of potassium carbonate is added to a barium nitrate solution.
2. An iron(II) sulfate solution is mixed with a potassium hydroxide solution.

For each reaction, write out the molecular, overall ionic, and net ionic equations:

1. An aqueous solution of potassium carbonate is added to a barium nitrate solution.
```
K}\mp@subsup{\textrm{K}}{2}{}\mp@subsup{\textrm{CO}}{3}{}(aq)+\textrm{Ba}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{2}{}(aq)->2\mp@subsup{\textrm{KNO}}{3}{}(aq)+\mp@subsup{\textrm{BaCO}}{3}{}(s
2\mp@subsup{K}{}{+}(aq)+}\mp@subsup{\textrm{CO}}{3}{2-}(aq)+\mp@subsup{\textrm{Ba}}{}{2+}(aq)+2\mp@subsup{\textrm{NO}}{3}{-}(aq)->2\mp@subsup{\textrm{K}}{}{+}(aq)+2\mp@subsup{\textrm{NO}}{3}{-}(aq)+ \mp@subsup{\textrm{BaCO}}{3}{}(s
CO
molecular equation
overall ionic equation
net ionic equation
```

2. An iron(II) sulfate solution is mixed with a potassium hydroxide solution.

$$
\begin{aligned}
& \mathrm{FeSO}_{4}(a q)+2 \mathrm{KOH}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(s)+\mathrm{K}_{2} \mathrm{SO}_{4}(a q) \\
& \mathrm{Fe}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q)+2 \mathrm{~K}^{+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(s)+2 \mathrm{~K}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \\
& \mathrm{Fe}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(s)
\end{aligned}
$$

molecular equation overall ionic equation net ionic equation

Precipitation Reaction Stoichiometry

A 250.0 mL solution of a 0.15 M potassium carbonate is added to 175 mL of a 0.200 M barium nitrate solution. What mass of precipitate is formed?

Precipitation Reaction Stoichiometry

A 250.0 mL solution of a 0.15 M potassium carbonate is added to 175 mL of a 0.200 M barium nitrate solution. What mass of precipitate is formed?

From previous slide, we know the following balanced chemical equations apply in this precipitation reaction:

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{BaCO}_{3}(\mathrm{~s}) \\
& 2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(a q)+\mathrm{Ba}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{BaCO}_{3}(s) \\
& \mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{Ba}^{2+}(\mathrm{aq})+\rightarrow \mathrm{BaCO}_{3}(s)
\end{aligned}
$$

molecular equation overall ionic equation net ionic equation

It's easiest to apply the molecular equation in stoichiometry of precipitation reactions. First, determine the number of moles of the starting reactants and determine which is the limiting reactant:

$$
\begin{array}{rlrl}
0.15 \mathrm{M} \mathrm{~K}_{2} \mathrm{CO}_{3} & =\frac{\mathrm{x} \mathrm{~mol}}{0.2500 \mathrm{~L}} & 0.200 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} & =\frac{y \mathrm{~mol}}{0.175 \mathrm{~L}} \\
\mathrm{x} & =0.037_{5} \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3} & y & =0.0350 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}
\end{array}
$$

\therefore The limiting reactant is $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$. Why?

Now, figure out how much barium carbonate you can make from this amount of limiting reactant:

$$
0.0350 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{BaCO}_{3}}{1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{137.3_{1} \mathrm{~g} \mathrm{BaCO}_{3}}{1 \mathrm{~mol} \mathrm{BaCO}_{3}}=6.91 \mathrm{~g} \mathrm{BaCO}_{3}
$$

Guided Introduction: Acid-Base Titrations

Think of acid-base reactions special precipitation reactions called a neutralization reaction:

$$
\underline{2} \mathrm{NaOH}(a q)+\underline{1} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \underline{1} \underline{\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+\underline{2} \mathrm{H}_{2} \mathrm{O}(I)}
$$

But we know that soluble salts (aqueous) exist as dissociated ions in solution!
It would be more accurate to dissociate the soluble salts.

We can transform the molecular equation into an complete ionic equation:

$$
2 \mathrm{Na}^{4}(\mathrm{aq})+\underline{2 O H}^{-}(\mathrm{aq})+\underline{2} \mathrm{H}^{+}(\mathrm{aq})+\underline{1} \mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \underline{2} \mathrm{NaF}^{7}(\mathrm{aq})+\underline{1} \mathrm{SO}_{4}^{2-}(s)+\underline{2} \mathrm{H}_{2} \mathrm{O}
$$

SPECTACTOR IONS

You may notice that some of these ions (Na^{+}and $\mathrm{SO}_{4}{ }^{2-}$) don't actually chemically react.

We can ignore these!

We can write a net ionic equation by eliminating all the spectator ions:

$$
\underline{2} \mathrm{H}^{+}(\mathrm{aq})+\underline{2} \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \underline{2} \mathrm{H}_{2} \mathrm{O}(I)
$$

Acid-Base Stoichiometry

What volume of a 0.50 M NaOH solution would be required to neutralize 40.0 mL of a $0.400 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

Acid-Base Stoichiometry

What volume of a 0.50 M NaOH solution would be required to neutralize 40.0 mL of a $0.400 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

From previous slide, we know the following balanced chemical equations apply in this neutralization reaction:

$$
\begin{array}{ll}
2 \mathrm{NaOH}(a q)+1 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 1 \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(I) & \text { molecular equation } \\
2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+1 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+1 \mathrm{SO}_{4}{ }^{2-}(s)+2 \mathrm{H}_{2} \mathrm{O}(I) & \begin{array}{l}
\text { overall ionic equation } \\
2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)
\end{array}
\end{array}
$$

It's easiest to apply the overall ionic equation in stoichiometry of neutralization reactions.
First, determine the number of moles of the H^{+}:

$$
\begin{aligned}
0.400 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} & =\frac{\mathrm{x} \mathrm{~mol}}{0.0400 \mathrm{~L}} \\
\mathrm{x} & =0.0160 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned} \quad \mathrm{n}_{\mathrm{H}^{+}}=0.0160 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{2 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=0.0320 \mathrm{~mol} \mathrm{H}^{+}
$$

To neutralize this many moles of H^{+}, we need an equivalent number of moles of OH^{-}:

$$
\mathrm{n}_{\mathrm{OH}^{-}}=0.0320 \mathrm{~mol} \mathrm{OH}^{-}=\mathrm{n}_{\mathrm{NaOH}}
$$

Now, figure out what volume of NaOH solution gives this many moles:

$$
\begin{aligned}
0.50 \mathrm{M} \mathrm{NaOH} & =\frac{0.0320 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~V}} \\
\mathrm{~V} & =0.0640 \mathrm{~L}
\end{aligned}
$$

Oxidation States/Numbers

The oxidation state is a hypothetical charge of an element IF it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number $=0$

Ex) Br_{2} : each Br is 0
Ex) $\mathrm{Mg}: \mathrm{Mg}$ is 0
2. Hydrogen usually has an oxidation number $=+1$

Ex) $\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{4}$
3. Oxygen usually has an oxidation number $=-1$

Ex) $\mathrm{H}_{2} \mathrm{O} ; \mathrm{CO}_{2}$
4. Everything else: follow the rules for ionic charges!

Ex) $\mathrm{NaCl}: \mathrm{Na}=+1 ; \mathrm{Cl}=-1$
Ex) CF_{4} : $\mathrm{C}=+4 ; \mathrm{F}=-1$
Ex) $\mathrm{CO}_{2}: \mathrm{C}=+4 ; \mathrm{O}=-2$

For each flask, give the oxidation state of each element:

For each flask, give the oxidation state of each element:

$S=+6$
$F=-1$

$C=+4$
$F=0$
$\mathrm{O}=-2$

$N=+2$
$O=-2$

What is a redox reaction?

A reaction in which the oxidation states of some elements change.

There are two types:

1. Reduction: Gain of an electron; becomes more negatively charged
2. Oxidation: Loss of an electron; becomes less negatively charged

LEO = Lose Electron Oxidation

$$
\mathrm{Cu}(s) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-}
$$

OIL = Oxidation Is Losing
says

GER = Gain Electron Reduction

$$
\mathrm{Ag}^{+}(\mathrm{aq})+1 \mathrm{e}^{-} \rightarrow \mathrm{Ag}(s)
$$

RIG = Reduction Is Gaining

These are called half-reactions because we typically have a both reactions occurring, or a reduction-oxidation (redox) reaction.

How do I balance a redox reaction?

$$
\mathrm{Fe}^{2+}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{Mn}^{2+}(a q)
$$

0 . Assign the oxidation states of each element.

$$
\mathrm{Fe}^{2+}=+2 \quad \mathrm{Mn} \text { in } \mathrm{MnO}_{4}^{--}:+7 \quad \mathrm{O} \text { in } \mathrm{MnO}_{4}^{-}:-2
$$

1. Separate into half-reactions.

$$
\mathrm{Fe}^{3+}=+3 \quad \mathrm{Mn}^{2+}:+2
$$

2. Balance atoms (except O and H): already balanced
3. Balance O atoms with $\mathrm{H}_{2} \mathrm{O}$ on opposite side.
4. Balance H atoms with H^{+}on opposite side.
5. Balance total charge with electrons (e-).
6. Balance the electrons by multiplying entire half-reactions.
7. Add the two half-reactions together. (Make sure overall equation is balanced and no extra electrons).

Assign the oxidation states for each element in the redox reaction below:

$$
\mathrm{Mn}^{2+}(a q)+\mathrm{BiO}_{3}^{-}(a q) \rightarrow \mathrm{MnO}_{4}^{-}(a q)+\mathrm{Bi}^{3+}(a q)
$$

Mn^{2+} :
Bi in $\mathrm{BiO}_{3}{ }^{-}$:
O in $\mathrm{BiO}_{3}{ }^{-}$:

Mn in $\mathrm{MnO}_{4}{ }^{-}$:

$$
\mathrm{Bi}^{3+}:
$$

O in MnO_{4}^{-}:

Assign the oxidation states for each element in the redox reaction below:

$$
\begin{array}{cc}
\mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{BiO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Bi}^{3+}(\mathrm{aq}) \\
\mathrm{Mn} \text { in } \mathrm{MnO}_{4}^{-}: & +7 \\
\mathrm{Mn}^{2+}:+2 & \mathrm{Bi}^{3+}:+3 \\
\mathrm{Bi} \text { in } \mathrm{BiO}_{3}^{-}:+5 & \mathrm{O}_{\mathrm{in} \mathrm{MnO}_{4}^{--}:-2}
\end{array}
$$

Balance the following reaction using the half-reactions method in acidic solution:

$$
\begin{aligned}
& \mathrm{Mn}^{2+}(a q)+\mathrm{BiO}_{3}^{-}(a q) \rightarrow \mathrm{MnO}_{4}^{-}(a q)+\mathrm{Bi}^{3+}(a q) \\
& \mathrm{Mn}^{2+} \text { : +2 } \\
& \mathrm{Mn} \text { in } \mathrm{MnO}_{4}{ }^{-}:+7 \\
& \mathrm{Bi} \text { in } \mathrm{BiO}_{3}{ }^{-}:+5 \\
& \mathrm{O} \text { in } \mathrm{BiO}_{3}{ }^{-}:-2 \\
& \mathrm{O} \text { in } \mathrm{MnO}_{4}{ }^{-}:-2
\end{aligned}
$$

Balance the following reaction using the half-reactions method in acidic solution:

$$
\begin{gathered}
\mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{BiO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Bi}^{3+}(\mathrm{aq}) \\
\mathrm{Mn} \text { in } \mathrm{MnO}_{4}^{-}:+7 \\
\mathrm{Mn}^{2+}:+2 \\
\mathrm{Bi} \text { in } \mathrm{BiO}_{3}^{-}:+5 \\
\mathrm{O} \text { in } \mathrm{BiO}_{3}^{-}:-2
\end{gathered} \mathrm{Bi}^{3+}:+3
$$

Exothermic vs. Endothermic

Because of the law of conservation of energy (energy cannot be created or destroyed), any energy lost from the system is energy gained by the surroundings.

$$
q_{\text {surr }}=-q_{\text {sys }}
$$

Because of the law of conservation of energy (energy cannot be created or destroyed), any energy gained by the system is energy lost from the surroundings.

$$
q_{\text {surr }}=-q_{\text {sys }}
$$

Q1: Is this endothermic or exothermic relative to the system?
A1: Exothermic.

Q2: Will the system be warmer or cooler than it was?
A2: Cooler, lost energy.

SURROUNDINGS	Q1: Is this endothermic or exothermic relative to the system? A1: Endothermic.
$q_{\text {sys }}<0$	SYSTEM
$q_{\text {sys }}>0$	Q2: Will the system be warmer or coler than it was? A2: Warmer, gained energy.
$q_{\text {surr }}>0$	$q_{\text {surr }}<0$

How do we measure enthalpy of a reaction $\left(\Delta H_{\mathrm{rxn}}\right)$? Calorimetry.

Typically, we don't measure the energy of a system directly (it's hard to do so).

Usually, we measure the change in the energy (or heat) as the system undergoes a change, like a chemical reaction. This is called the change in enthalpy or heat of a reaction, denoted ΔH.

Also, we usually measure the surroundings and not the system itself.

Remember, that $q_{\text {surr }}=-q_{\text {sys }}$.

More specifically, we use a calorimeter as the surroundings.
And our system is a particular reaction taking place.

A calorimeter is a well-insulated water bath, such that:

$$
\Delta H_{\mathrm{rxn}}=-q_{\text {calorimeter }}
$$

In a calorimeter at constant pressure and $25.2^{\circ} \mathrm{C}$, you mix solutions of potassium carbonate and barium nitrate, which releases $\Delta H_{\mathrm{rxn}}=-196 \mathrm{~kJ}$. If the total volume of the solution is 1.2 L , what is the final temperature of the solution after the reaction is complete?

The molar heat capacity of liquid water is $75.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}}$.

In a calorimeter at constant pressure and $25.2^{\circ} \mathrm{C}$, you mix solutions of potassium carbonate and barium nitrate, which releases $\Delta H_{\mathrm{rxn}}=-196 \mathrm{~kJ}$. If the total volume of the solution is 1.2 L , what is the final temperature of the solution after the reaction is complete?

The molar heat capacity of liquid water is $75.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}}$.

Understand the heat of the reaction occurring is absorbed by the solution (the water), so

$$
\mathrm{q}_{\text {water }}=-\Delta H_{\mathrm{rxn}}=196 \mathrm{~kJ}
$$

Now, figure out what happens to the water if we were to heat it with 196 kJ of heat:

$$
\begin{aligned}
\mathrm{q} & =\mathrm{nc}_{\mathrm{P}} \Delta \mathrm{~T} \\
196 \mathrm{~kJ} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}} & =\left(1.2 \mathrm{~L} \mathrm{H} \mathrm{O} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(75.3 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}}\right)\left(\mathrm{T}_{\mathrm{f}}-25.2^{\circ} \mathrm{C}\right) \\
\mathrm{T}_{\mathrm{f}} & =64^{\circ} \mathrm{C}
\end{aligned}
$$

Hess's Law: Guided Example

Let's say you want to calculate the heat of reaction for the following reaction:

$$
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)
$$

You don't want to carry out the actual reaction, but you have access to the heats of reactions of some related reactions:

$$
\begin{array}{ll}
\mathrm{C}(s)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g) & \Delta H=-111 \mathrm{~kJ} \\
\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta H=-283 \mathrm{~kJ}
\end{array}
$$

Since enthalpy is a state function, if you add up (in some manner) these two reactions to get the reaction you are interested in, then you can also get the heat of reaction.
Let's simply add reactions (1) and (2) to get reaction (3) below:

$$
\begin{equation*}
\mathrm{C}(s)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g) \tag{1}
\end{equation*}
$$

$$
\Delta H=-111 \mathrm{~kJ}
$$

$\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
$\Delta H=-283 \mathrm{~kJ}$
(3)

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\begin{equation*}
\Delta H_{\mathrm{rxn}}=-111 \mathrm{~kJ}+(-283 \mathrm{~kJ})=-394 \mathrm{~kJ} \tag{2}
\end{equation*}
$$

Reaction (3) is exactly the reaction we are interested in. Now let's add the numbers in!

Another Example

Let's say you want to calculate the heat of reaction for the following reaction:

$$
\mathrm{CIF}(g)+\mathrm{F}_{2}(g) \rightarrow \mathrm{CIF}_{3}(g)
$$

You have access to the heats of reactions of some related reactions:
(1) $\quad 2 \mathrm{OF}_{2}(g) \rightarrow \mathrm{O}_{2}(g)+2 \mathrm{~F}_{2}(g)$

$$
\text { (3) } \quad \mathrm{CIF}_{3}(g)+\mathrm{O}_{2}(g) \rightarrow 1 / 2 \mathrm{Cl}_{2} \mathrm{O}(g)+3 / 2 \mathrm{OF}_{2}(g)
$$

$$
\begin{aligned}
& \Delta H=-49.4 \mathrm{~kJ} \\
& \Delta H=+205.6 \mathrm{~kJ} \\
& \Delta H=+266.7 \mathrm{~kJ}
\end{aligned}
$$

Another Example

Let's say you want to calculate the heat of reaction for the following reaction:

$$
\mathrm{CIF}(g)+\mathrm{F}_{2}(g) \rightarrow \mathrm{CIF}_{3}(g)
$$

You have access to the heats of reactions of some related reactions:
(1) $\quad 2 \mathrm{OF}_{2}(g) \rightarrow \mathrm{O}_{2}(g)+2 \mathrm{~F}_{2}(g)$

$$
\begin{aligned}
& \Delta H=-49.4 \mathrm{~kJ} \\
& \Delta H=+205.6 \mathrm{~kJ} \\
& \Delta H=+266.7 \mathrm{~kJ}
\end{aligned}
$$

(2) $\quad 2 \mathrm{CIF}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{OF}_{2}(g)$
(3) $\quad \mathrm{CIF}_{3}(g)+\mathrm{O}_{2}(g) \rightarrow 1 / 2 \mathrm{Cl}_{2} \mathrm{O}(g)+3 / 2 \mathrm{OF}_{2}(g)$

Add up reactions (2), reverse of (1), and reverse of (3):

$$
\begin{align*}
& \mathrm{CIF}(g)+1 / 2 \sigma_{2}(g) \rightarrow 1 / 2 \mathrm{Cl}_{2} \mathrm{O}(g)+1 / 20 \mathrm{~F}_{2}(g) \tag{2}\\
& \mathrm{F}_{2}(g)+1 / 2 \sigma_{2}(g) \rightarrow \mathrm{OF}_{2}(g) \tag{1}\\
& 1 / 2 \mathrm{Cl}_{2} \mathrm{O}(g)+3 / 2 \varnothing \mathrm{~F}_{2}(g) \rightarrow \mathrm{CIF}_{3}(g)+0 / 2(g) \tag{3}\\
& \mathrm{CIF}(g)+\mathrm{F}_{2}(g) \rightarrow \mathrm{CIF}_{3}(g)
\end{align*}
$$

$$
\Delta H=1 / 2(+205.6 \mathrm{~kJ})
$$

$$
\Delta H=1 / 2(+49.4 \mathrm{~kJ})
$$

$$
\Delta H=-266.7 \mathrm{~kJ}
$$

$$
\Delta H_{\mathrm{rxn}}=-139.2 \mathrm{~kJ}
$$

Heats of Formation $\left(\Delta H_{f}\right)$

Let's say we want to calculate the standard heat of reaction for the following reaction:

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)
$$

Instead of Hess's Law, you could also use the standard heats of formations ($\Delta H_{\mathrm{f}}{ }^{\circ}$) to calculate ΔH_{rxn}.

Q: What is a heat of formation anyway?
A: It's the amount of heat required to form 1 mole of a substance from its elements in standard states.

Q: What is a standard state?
A: 1 bar (~1 atm) of pressure and $25^{\circ} \mathrm{C}$. (This is NOT STP for gases!)

For example:

How to use heats of formation $\left(\Delta H_{\mathrm{f}}\right)$

A heat of combustion $\left(\Delta H_{\text {comb }}\right)$ is the same thing as the heat of reaction but pertains to a combustion reaction, such as:

$$
2 \mathrm{CH}_{3} \mathrm{OH}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

PAY ATTENTION TO THE STOICHIOMETRIC AMOUNTS WHEN GIVEN HEATS OF REACTION!

Calculate the heat of this reaction (combustion):

$$
\begin{aligned}
& \Delta H_{\mathrm{rxn}}^{\mathrm{o}}=\sum_{\text {products }} n_{\text {products }} \Delta H_{\mathrm{f}, \text { products }}^{\mathrm{o}}-\sum_{\text {reactants }} n_{\text {reactants }} \Delta H_{\mathrm{f}, \text { reactants }}^{\mathrm{o}} \\
& \Delta H_{\mathrm{rxn}}^{\mathrm{o}}=\mathrm{n}_{\mathrm{CO}_{2}} \Delta H_{\mathrm{CO}_{2}}^{\mathrm{o}}+n_{\mathrm{H}_{2} \mathrm{O}} \Delta H_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{o}}-n_{\mathrm{CH}_{3} \mathrm{OH}} \Delta H_{\mathrm{CH}_{3} \mathrm{OH}}^{\mathrm{o}}-n_{\mathrm{O}_{2}} \Delta H_{\mathrm{O}_{2}}^{\mathrm{o}} \\
& \Delta H_{\mathrm{rxn}}^{\mathrm{o}}=2 \mathrm{~mol}\left(-393.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)+4 \mathrm{~mol}\left(-241.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-2 \mathrm{~mol}\left(-200.7 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-3\left(0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right) \\
& \Delta H_{\mathrm{rxn}}^{\mathrm{o}}=-1353 \mathrm{~kJ} \quad \begin{array}{r}
\text { THIS IS HOW MUCH HEAT RELEASED IF 2 } \\
\text { MOLES OF CH OH ARE BURNED! }
\end{array}
\end{aligned}
$$

When are gases ideal? When are they not ideal?

Gases behave ideally when:

- Pressure is low
- Temperature is high
- Volume of container is much larger than volume of actual gas particles

Gases behave non-ideally when:

- Pressure is high
- Temperature extremely low
- Volume of the gas becomes important
- Intermolecular or van der Waals interactions between the gas particles cannot be ignored

The Ideal Gas Law

$\mathrm{PV}=\mathrm{nRT}$

$$
\begin{gathered}
\mathrm{P}=\text { absolute pressure (units: atm) } \\
\mathrm{V}=\text { volume of container (units: } \mathrm{L} \text {) } \\
\mathrm{n}=\text { number of moles of gas (units: } \mathrm{mol} \text {) } \\
\mathrm{T}=\text { absolute temperature (units: } \mathrm{K} \text {) } \\
\mathrm{R}=\text { universal gas constant }\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)
\end{gathered}
$$

Reference Points for Gases

Standard Temperature and Pressure (STP)

- $P=1$ atm
- $\mathrm{T}=0^{\circ} \mathrm{C}=273 \mathrm{~K}$

Molar Volume: volume occupied by one mole of any ideal gas at STP $=22.4 \mathrm{~L}$

ALWAYS WORK IN ABSOLUTE TEMPERATURE SCALE (K)
ALWAYS WORK IN ABSOLUTE PRESSURE SCALE (ATM)

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

Start by recognizing that the contents of the bulb are at STP (1 atm and $0^{\circ} \mathrm{C}$).

This means that 1 mole of the gas will occupy 22.4 L of volume.

We can use the following dimensional analysis to find the total number of moles:

$$
500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=0.02232 \mathrm{~mol} \text { gas }
$$

Alternatively, use the Ideal Gas Law: $\quad \mathrm{PV}=\mathrm{nRT}$

$$
\begin{aligned}
\mathrm{n} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.0 \mathrm{~atm})\left(500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(273.15 \mathrm{~K})} \\
\mathrm{n} & =0.02232 \mathrm{~mol} \text { gas }
\end{aligned}
$$

Consider the following four identical 1.0 L flasks:

A) Which flask has the largest number of atoms?
B) Which flask has the highest pressure?

Consider the following four identical 1.0 L flasks:

A) Which flask has the largest number of atoms?

$$
\begin{array}{ll}
\mathrm{n}_{\mathrm{SF}_{6}}=0.010 \mathrm{~mol} \mathrm{SF}_{6} & \mathrm{n}_{\mathrm{F}_{2}}=\frac{(3.0 \mathrm{~atm})(1.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(273 \mathrm{~K})}=0.13 \mathrm{~mol} \mathrm{~F}_{2} \\
\mathrm{n}_{\mathrm{CO}_{2}}=0.5 \mathrm{~mol} \mathrm{CO}_{2} & \mathrm{n}_{\mathrm{NO}}=\frac{(1.0 \mathrm{~atm})(1.0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(200 \mathrm{~K})}=0.061 \mathrm{~mol} \mathrm{NO}
\end{array}
$$

To convert each of these mole amounts, we would do the following:

$$
\mathrm{n}_{\mathrm{X}} \times \frac{\mathrm{N}_{\mathrm{A}} \text { molecules }}{1 \mathrm{~mol}} \times \frac{\mathrm{y} \text { atoms }}{1 \text { molecule }}=\left(\mathrm{n}_{\mathrm{X}} \cdot \mathrm{~N}_{\mathrm{A}} \cdot \mathrm{y}\right) \text { atoms }
$$

So, Flask B has the largest number of atoms (largest $n_{x} \cdot y$).
B) Which flask has the highest pressure?

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{SF}_{6}}=\frac{(0.010 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300 \mathrm{~K})}{1.0 \mathrm{~L}}=0.25 \mathrm{~atm} & \mathrm{P}_{\mathrm{F}_{2}}=3.0 \mathrm{~atm} \\
\mathrm{P}_{\mathrm{CO}_{2}}=\frac{(0.5 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(600 \mathrm{~K})}{1.0 \mathrm{~L}}=25 \mathrm{~atm} & \mathrm{P}_{\mathrm{NO}}=1.0 \mathrm{~atm}
\end{array}
$$

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.

Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{V}_{1}=6.0 \mathrm{~L} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=-25^{\circ} \mathrm{C}=284.15 \mathrm{~K} & \mathrm{~T}_{2}=72{ }^{\circ} \mathrm{C}=345 .{ }^{\circ} \mathrm{K}
\end{array}
$$

Set up the gas law and solve for final volume $\left(\mathrm{V}_{2}\right)$:

$$
\begin{aligned}
\frac{V_{1}}{T_{1}} & =\frac{V_{2}}{T_{2}} \\
V_{2} & =\frac{V_{1} T_{2}}{T_{1}} \\
& =\frac{(6.0 \mathrm{~L})\left(345^{\prime 15} \mathrm{~K}\right)}{248 \cdot 15 \mathrm{~K}} \\
\mathrm{~V}_{2} & =8.3 \mathrm{~L}
\end{aligned}
$$

P and n are constant.

How to calculate partial pressures of a mixture of gases?

If you have a mixture of gases, and each gas behaves ideally, then the gases do not interact with each other and you can apply the ideal gas law to each gas independently.

This means that you can simply add the partial pressure of each gas together to find the total pressure:

$$
\begin{aligned}
& P_{\text {total }}=P_{A}+P_{\mathrm{B}}+P_{\mathrm{C}} \ldots \\
& n_{\text {total }}=n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{C}} \ldots
\end{aligned}
$$

How to calculate partial pressure of gas A in a mixture:

- Determine moles of the gas
- Determine the mole ratio

$$
\begin{aligned}
& n_{\mathrm{A}} \\
& X_{\mathrm{A}}=n_{\mathrm{A}} / n_{\text {total }} \\
& P_{\mathrm{A}}=X_{\mathrm{A}} P_{\text {total }} \\
& P_{\text {total }}=n_{\text {total }} R T / \mathrm{V}
\end{aligned}
$$

- Or apply the ideal gas law on gas A only to find P_{A}
$V=1.50 \mathrm{~L} \quad V=1.00 \mathrm{~L} \quad V=2.00 \mathrm{~L}$

Imagine that both stopcocks were opened so that the gases mix at 298 K.

What is the partial pressure of each gas after opening?

Solve for the number of moles using the pressures of each gas using the ideal gas law:

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(2.13 \mathrm{~atm})(1.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{CO}_{2}} & =0.130_{7} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{H}_{2}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(0.861 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{N}_{2}} & =0.0352_{1} \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{Ar}} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.15 \mathrm{~atm})(2.00 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
\mathrm{n}_{\mathrm{Ar}} & =0.0940_{5} \mathrm{~mol}
\end{aligned}
$$

If we open the stopcocks, the total volume changes to 4.50 L . Now solve for new pressures:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{CO}_{2}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.130_{7} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{CO}_{2}} & =0.710 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{H}_{2}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.0352_{1} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{H}_{2}} & =0.191 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{Ar}} & =\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& =\frac{\left(0.0940_{5} \mathrm{~mol}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}{4.50 \mathrm{~L}} \\
\mathrm{P}_{\mathrm{Ar}} & =0.511 \mathrm{~atm}
\end{aligned}
$$

The root-mean-square speed (u_{rms})

ROOT-MEAN-SQUARE (RMS) SPEEDS

$$
u_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M M}} \quad ; \quad \frac{u_{\mathrm{rms}, \mathrm{~A}}}{u_{\mathrm{rms}, \mathrm{~B}}}=\sqrt{\frac{M M_{\mathrm{B}}}{M M_{\mathrm{A}}}} \quad ; \quad R=8.314 \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~mol} \cdot \mathrm{~K} \cdot \mathrm{~s}^{2}}
$$

At a given temperature, gases with larger molar masses (MM) move more slowly.

EFFUSION RATE ($r_{\text {eff }}$)

$$
\frac{r_{\mathrm{eff}, \mathrm{~A}}}{r_{\mathrm{eff}, \mathrm{~B}}}=\frac{u_{\mathrm{rms}, \mathrm{~A}}}{u_{\mathrm{rms}, \mathrm{~B}}}=\sqrt{\frac{M M_{\mathrm{B}}}{M M_{\mathrm{A}}}}
$$

At a given temperature, gases with smaller MMs have a higher chance of escaping.

Consider the following four identical 1.0 L flasks:

A) In which flask will the diffusion of the gas be the slowest?
B) Which flask contains the gas with the smallest average velocity?

Consider the following four identical 1.0 L flasks:

A) In which flask will the diffusion of the gas be the slowest?

$$
u_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M M}} \Rightarrow u_{\mathrm{rms}} \propto \frac{\mathrm{~T}}{\mathrm{MM}} \quad \begin{aligned}
& \frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{MM}_{\mathrm{A}}}=\frac{300}{146.1}=2.1 \\
& \frac{\mathrm{~T}_{\mathrm{B}}}{\mathrm{MM}_{\mathrm{B}}}=\frac{600}{44.0}=13.6
\end{aligned} \frac{\mathrm{~T}_{\mathrm{C}}}{\mathrm{MM}_{\mathrm{C}}}=\frac{273}{38.0}=7.20 \text { 留 }=\frac{200}{30.0}=6.7 ~ \$
$$

The larger the u_{rms}, the slower the rate of diffusion.
So, Flask A has the slowest rate of diffusion.
B) Which flask contains the gas with the smallest average velocity?

$$
u_{\mathrm{avg}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \cdot \mathrm{MM}}} \Rightarrow u_{\mathrm{avg}} \propto \frac{\mathrm{~T}}{\mathrm{MM}} \quad \begin{aligned}
& \frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{MM}_{\mathrm{A}}}=\frac{300}{146.1}=2.1 \\
& \frac{T_{\mathrm{B}}}{\mathrm{MM}_{\mathrm{B}}}=\frac{600}{44.0}=13.6
\end{aligned} \frac{\mathrm{~T}_{\mathrm{C}}}{\mathrm{MM}_{\mathrm{C}}}=\frac{273}{\mathrm{TM}_{\mathrm{D}}}=\frac{200}{30.0}=6.2 .2
$$

