## EXAM 3 Review Answers

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2018
www.mioy.org/chem161

Click on the slide number corresponding to the problem for which you would like the solution:

$$
\begin{array}{llllll} 
& \underline{2} & \underline{3} & \underline{4} & \underline{5} & \underline{6} \\
\underline{7} & \underline{8} & \underline{9} & \underline{10} & \underline{11} & \underline{12} \\
\underline{13} & \underline{14} & \underline{15} & \underline{16} & \underline{17} & \underline{18} \\
\underline{19} & \underline{20} & \underline{21} & \underline{22} & \underline{23} &
\end{array}
$$

## Photon A has a frequency of 2.45 GHz . Photon B has a wavelength of 965 nm . <br> Which photon has greater energy?

There are three ways you can solve this problem since we can inter-relate energy $(E)$, wavelength $(\lambda)$, and frequency $(v)$ via:

$$
E=\frac{h c}{\lambda}=h v \quad ; \quad \text { where } c=\lambda v
$$

| Comparing Energies | Comparing Wavelengths | Comparing Frequencies |
| :---: | :---: | :---: |
| $\begin{aligned} E_{\mathrm{A}} & =h v_{\mathrm{A}} \\ & =\left(6.626 \times 10^{-34} \frac{\mathrm{~J}}{\mathrm{~s}}\right)\left(2.45 \times 10^{9} \mathrm{~Hz}\right) \\ E_{\mathrm{A}} & =1.62 \times 10^{-24} \mathrm{~J} \end{aligned}$ | $\begin{aligned} c & =\lambda_{\mathrm{A}} v_{\mathrm{A}} \\ 3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} & =\lambda_{\mathrm{A}} \times\left(2.45 \times 10^{9} \mathrm{~Hz}\right) \\ \lambda_{\mathrm{A}} & =0.122 \mathrm{~m} \end{aligned}$ | $v_{\mathrm{A}}=2.45 \times 10^{9} \mathrm{~Hz}$ |
| $\begin{aligned} E_{\mathrm{B}} & =\frac{h c}{\lambda_{\mathrm{B}}} \\ & =\frac{\left(6.626 \times 10^{-34} \frac{\mathrm{~J}}{\mathrm{~s}}\right)\left(3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{965 \times 10^{-9} \mathrm{~m}} \\ E_{\mathrm{B}} & =2.06 \times 10^{-19} \mathrm{~J} \end{aligned}$ | $\lambda_{B}=965 \times 10^{-9} \mathrm{~m}$ | $\begin{aligned} c & =\lambda_{\mathrm{B}} v_{\mathrm{B}} \\ 3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} & =\left(965 \times 10^{-9} \mathrm{~m}\right) \times v_{\mathrm{B}} \\ v_{\mathrm{B}} & =3.11 \times 10^{14} \mathrm{~Hz} \end{aligned}$ |
| Photon B has greater energy. | Photon B has a shorter wavelength; thus, photon $B$ has greater energy. | Photon B has a larger frequency and shorter wavelength; thus, photon $B$ has greater energy. |

## A red laser emits $630-\mathrm{nm}$ photons at a rate of $1.00 \mathrm{~J} / \mathrm{s}$. In 5 seconds, how many photons does the laser emit?

First, consider the information we know: the laser emits 1.00 J of energy per second. From this information we can figure out how much energy, in total, is emitted over a span of 5 seconds.

$$
1.00 \frac{\mathrm{~J}}{\mathrm{~s}} \times 5.00 \mathrm{~s}=5.00 \mathrm{~J} \text { (total energy emitted) }
$$

Second, we need to consider that light is composed of photons with equal energy, and that this energy is given by the wavelength. Therefore, we can now determine the energy of a single photon of red laser with wavelength 630 nm .

$$
E=\frac{h c}{\lambda}=\frac{\left(6.626 \times 10^{-34} \frac{\mathrm{~J}}{\mathrm{~s}}\right)\left(3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{630 \times 10^{-9} \mathrm{~m}}=3.15_{5} \times 10^{-19} \mathrm{~J}(\text { per photon })
$$

Finally, we can determine the number of photons emitted in 5.00 seconds since we know the total amount of energy and the amount of energy per photon of red laser:

$$
\mathrm{n}_{\text {photons }}=(\underbrace{(5.00 \mathrm{~J})}_{\begin{array}{c}
\text { Total energy } \\
\text { emitted in } \\
5 \text { seconds }
\end{array}} \times \underbrace{\frac{1 \text { photon }}{3.15_{5} \times 10^{-19} \mathrm{~J}}}_{\begin{array}{c}
\text { Energy per } \\
\text { photon }
\end{array}})=1.58 \times 10^{19} \text { photons }
$$

## Calculate the frequencies for the following four electron transitions in the hydrogen atom.

For electron transitions in the hydrogen atom, we can apply the Rydberg equation to calculate the wavelength associated with each transition.

$$
\frac{1}{\lambda}=\left[1.10 \times 10^{7} \frac{1}{\mathrm{~m}}\right]\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) ; \quad R_{H}=1.10 \times 10^{7} \frac{1}{\mathrm{~m}}
$$



## Calculate the wavelengths of radiation required for the following four absorptions in the hydrogen atom

We can still apply the Rydberg equation to calculate the wavelengths, but this corresponds to absorptions now, not emissions.

$$
\frac{1}{\lambda}=\left[1.10 \times 10^{7} \frac{1}{\mathrm{~m}}\right]\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \quad ; \quad R_{H}=1.10 \times 10^{7} \frac{1}{\mathrm{~m}}
$$



## Which of the following electron transitions in the hydrogen atom results in the emission of light with the longest wavelength?

A) $n=4 \rightarrow n=3$
B) $n=1 \rightarrow n=2$
C) $n=1 \rightarrow n=6$
D) $n=3 \rightarrow n=2$

This problem should not require any calculations-even though you will get the right answer, it will take you too long to do.

First, eliminate choices $B$ and $C$ since those are both absorptions.

Second, you need to understand that the spacing between the states gets smaller and smaller as the value of $n$ increases (i.e. higher excited states). So the largest energy spacing will occur for the $n=2 \rightarrow n=1$ transition, which results in the shortest wavelength and highest frequency of light.

Every successive emission has smaller $\Delta E$, longer $\lambda$, and higher $v$.

So, the answer is A .


## What are the possible values of $m_{\ell}$ when $n=4$ ?

Remember the general, ordered scheme for assigning/generating quantum numbers:

1. Start with $n$, the principal quantum number
2. Then assign $\ell$, the angular momentum quantum number.

The values of $\ell$ range from 0 to $(n-1)$ in integers.
The value of $\ell$ determines the orbital shape ( $s, p, d$, or $f$ ).
3. Next assign $m_{\ell}$, which is the magnetic quantum number.
$m_{\ell}$ can take on integer values ranging from $-\ell$ to $+\ell$.
The number of possible $m_{\ell}$ values determines how many orbitals exist.
4. Finally, assign $m_{s}$, the spin quantum number. $m_{\mathrm{s}}$ can only take on two values: $+1 / 2$ and $-1 / 2$.
This tells us that only two electrons can occupy an orbital.

| $n$ | $\Rightarrow$ | $\ell$ | $\Rightarrow$ | $m_{\ell}$ | $\Rightarrow$ | $m_{\text {s }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 |  | 0 |  |  | 1 | \% or $-1 / 2$ |

(s)

1
(p)

2
(d)

f)

## Which of the following sets of quantum numbers are not allowed？

| Set I | Set II | Set III | Set IV |
| :---: | :---: | :---: | :---: |
| $n=1$ | $n=3$ | $n=1$ | $n=2$ |
| $\ell=2$ | $\ell=0$ | $\ell=0$ | $\ell=1$ |
| $m_{l}=0$ | $m_{\ell}=0$ | $m_{\ell}=1$ | $m_{\ell}=2$ |
| $m_{\text {s }}=+1 / 2$ | $m_{\text {s }}=-1 / 2$ | $m_{\text {s }}=-1 / 2$ | $m_{\text {s }}=+1 / 2$ |
| 介 |  | 介 | 乞 |
| For $n=1$ ，the only possible value of $\ell$ is 0 ． <br> Therefore，Set I is not allowed． |  | For $n=1$ ，the only possible value of $\ell$ is 0 ． <br> But，for $\ell=0$ ，the only possible value of $m_{\ell}$ is 0 ． | For $n=2$ ，the possible values of $\ell$ are 0 and 1 ． For $\ell=1$ ，the possible values of $m_{\ell}$ are $-1,0,+1$ ． |
|  |  | Therefore，Set III is not allowed． | Therefore，Set IV is not allowed． |

Remember the general，ordered scheme for assigning／generating quantum numbers：
1．Start with $n$ ，the principal quantum number
2．Then assign $\ell$ ，the angular momentum quantum number． The values of $\ell$ range from 0 to $(n-1)$ in integers．
3．Next assign $m_{\ell}$ ，which is the magnetic quantum number． $m_{\ell}$ can take on integer values ranging from $-\ell$ to $+\ell$ ．
4．Finally，assign $m_{s}$ ，the spin quantum number．
$m_{\mathrm{s}}$ can only take on two values：$+1 / 2$ and $-1 / 2$ ．

## Arrange the following sets of atoms in order of increasing atomic size.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{Sn}, \mathrm{Xe}, \mathrm{Rb}, \mathrm{Sr}$ | $\mathrm{Xe}<\mathrm{Sn}<\mathrm{Sr}<\mathrm{Rb}$ |
| $\mathrm{Rn}, \mathrm{He}, \mathrm{Xe}, \mathrm{Kr}$ |  |
| $\mathrm{Pb}, \mathrm{Ba}, \mathrm{Cs}, \mathrm{At}$ |  |
|  |  |
| $\mathrm{Ga}, \mathrm{N}, \mathrm{Cs}, \mathrm{P}$ |  |
| $\mathrm{O}^{2-}, \mathrm{F}-, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ |  |

Size increases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction from the positively charged nucleus.

Size decreases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus).

[^0]
## Arrange the following sets of atoms in order of increasing atomic size.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{Sn}, \mathrm{Xe}, \mathrm{Rb}, \mathrm{Sr}$ | $\mathrm{Xe}<\mathrm{Sn}<\mathrm{Sr}<\mathrm{Rb}$ |
| $\mathrm{Rn}, \mathrm{He}, \mathrm{Xe}, \mathrm{Kr}$ | $\mathrm{He}<\mathrm{Kr}<\mathrm{Xe}<\mathrm{Rn}$ |
| $\mathrm{Pb}, \mathrm{Ba}, \mathrm{Cs}, \mathrm{At}$ |  |
| $\mathrm{Ga}, \mathrm{N}, \mathrm{Cs}, \mathrm{P}$ |  |
| $\mathrm{O}^{2-}, \mathrm{F}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ |  |

Size increases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction from the positively charged nucleus.

Size decreases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus).

[^1]
## Arrange the following sets of atoms in order of increasing atomic size.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{Sn}, \mathrm{Xe}, \mathrm{Rb}, \mathrm{Sr}$ | $\mathrm{Xe}<\mathrm{Sn}<\mathrm{Sr}<\mathrm{Rb}$ |
| $\mathrm{Rn}, \mathrm{He}, \mathrm{Xe}, \mathrm{Kr}$ | $\mathrm{He}<\mathrm{Kr}<\mathrm{Xe}<\mathrm{Rn}$ |
| $\mathrm{Pb}, \mathrm{Ba}, \mathrm{Cs}, \mathrm{At}$ | $\mathrm{At}<\mathrm{Pb}<\mathrm{Ba}<\mathrm{Cs}$ |
| $\mathrm{Ga}, \mathrm{N}, \mathrm{Cs}, \mathrm{P}$ |  |
| $\mathrm{O}^{2-}, \mathrm{F}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ |  |

Size increases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction from the positively charged nucleus.

Size decreases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus).

[^2]
## Arrange the following sets of atoms in order of increasing atomic size.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{Sn}, \mathrm{Xe}, \mathrm{Rb}, \mathrm{Sr}$ | $\mathrm{Xe}<\mathrm{Sn}<\mathrm{Sr}<\mathrm{Rb}$ |
| $\mathrm{Rn}, \mathrm{He}, \mathrm{Xe}, \mathrm{Kr}$ | $\mathrm{He}<\mathrm{Kr}<\mathrm{Xe}<\mathrm{Rn}$ |
| $\mathrm{Pb}, \mathrm{Ba}, \mathrm{Cs}, \mathrm{At}$ | $\mathrm{At}<\mathrm{Pb}<\mathrm{Ba}<\mathrm{Cs}$ |
| $\mathrm{Ga}, \mathrm{N}, \mathrm{Cs}, \mathrm{P}$ | $\mathrm{N}<\mathrm{P}<\mathrm{Ga}<\mathrm{Cs}$ |
| $\mathrm{O}^{2-}, \mathrm{F}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ |  |

Size increases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction from the positively charged nucleus.

Size decreases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus).

[^3]
## Arrange the following sets of atoms in order of increasing atomic size.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{Sn}, \mathrm{Xe}, \mathrm{Rb}, \mathrm{Sr}$ | $\mathrm{Xe}<\mathrm{Sn}<\mathrm{Sr}<\mathrm{Rb}$ |
| $\mathrm{Rn}, \mathrm{He}, \mathrm{Xe}, \mathrm{Kr}$ | $\mathrm{He}<\mathrm{Kr}<\mathrm{Xe}<\mathrm{Rn}$ |
| $\mathrm{Pb}, \mathrm{Ba}, \mathrm{Cs}, \mathrm{At}$ | $\mathrm{At}<\mathrm{Pb}<\mathrm{Ba}<\mathrm{Cs}$ |
| $\mathrm{Ga}, \mathrm{N}, \mathrm{Cs}, \mathrm{P}$ | $\mathrm{N}<\mathrm{P}<\mathrm{Ga}<\mathrm{Cs}$ |
| $\mathrm{O}^{2-}, \mathrm{F}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ | $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}$ |

Size increases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction from the positively charged nucleus.

Size decreases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus).

[^4]
## Arrange the following sets of atoms in order of increasing ionization energy.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{B}, \mathrm{N}, \mathrm{Rb}$ | $\mathrm{Rb}<\mathrm{B}<\mathrm{N}$ |
| $\mathrm{Li}, \mathrm{C}, \mathrm{Si}$ |  |
|  |  |
| $\mathrm{Mg}, \mathrm{O}, \mathrm{P}, \mathrm{Na}$ |  |
| Te, Cs, $\mathrm{F}, \mathrm{Sn}, \mathrm{Se}$ |  |

## IE decreases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction (more screening) from the positively charged nucleus
$\rightarrow$ easier to remove electron!
IE increases across a row:
- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus)
$\rightarrow$ harder to remove electron!


## Arrange the following sets of atoms in order of increasing ionization energy.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{B}, \mathrm{N}, \mathrm{Rb}$ | $\mathrm{Rb}<\mathrm{B}<\mathrm{N}$ |
| $\mathrm{Li}, \mathrm{C}, \mathrm{Si}$ |  |
|  |  |
| $\mathrm{Mi}<\mathrm{Si}<\mathrm{C}$ |  |
| $\mathrm{Mg}, \mathrm{P}, \mathrm{Na}$ |  |
| $\mathrm{Te}, \mathrm{Cs}, \mathrm{F}, \mathrm{Sn}, \mathrm{Se}$ |  |

## IE decreases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction (more screening) from the positively charged nucleus
$\rightarrow$ easier to remove electron!

IE increases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus)
$\rightarrow$ harder to remove electron!


## Arrange the following sets of atoms in order of increasing ionization energy.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{B}, \mathrm{N}, \mathrm{Rb}$ | $\mathrm{Rb}<\mathrm{B}<\mathrm{N}$ |
| $\mathrm{Li}, \mathrm{C}, \mathrm{Si}$ | $\mathrm{Li}<\mathrm{Si}<\mathrm{C}$ |
| $\mathrm{Mg}, \mathrm{O}, \mathrm{P}, \mathrm{Na}$ | $\mathrm{Na}<\mathrm{Mg}<\mathrm{P}<\mathrm{O}$ |
| $\mathrm{Te}, \mathrm{Cs}, \mathrm{F}, \mathrm{Sn}, \mathrm{Se}$ |  |

## IE decreases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction (more screening) from the positively charged nucleus
$\rightarrow$ easier to remove electron!

IE increases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus)
$\rightarrow$ harder to remove electron!


## Arrange the following sets of atoms in order of increasing ionization energy.

| Sets | Ordered Sets |
| :---: | :---: |
| $\mathrm{B}, \mathrm{N}, \mathrm{Rb}$ | $\mathrm{Rb}<\mathrm{B}<\mathrm{N}$ |
| $\mathrm{Li}, \mathrm{C}, \mathrm{Si}$ | $\mathrm{Li}<\mathrm{Si}<\mathrm{C}$ |
| $\mathrm{Mg}, \mathrm{O}, \mathrm{P}, \mathrm{Na}$ | $\mathrm{Na}<\mathrm{Mg}<\mathrm{P}<\mathrm{O}$ |
| $\mathrm{Te}, \mathrm{Cs}, \mathrm{F}, \mathrm{Sn}, \mathrm{Se}$ | $\mathrm{Cs}<\mathrm{Sn}<\mathrm{Te}<\mathrm{Se}<\mathrm{F}$ |

## IE decreases down a column:

- Adding electrons to larger and larger energy levels ( $n$ ).
- Electrons are farther and farther from the nucleus.
- Less attraction (more screening) from the positively charged nucleus
$\rightarrow$ easier to remove electron!

IE increases across a row:

- Adding electrons to the same energy level ( $n$ ).
- But also adding more and more protons (positive charge).
- Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus)
$\rightarrow$ harder to remove electron!


## For each of the following sets of atoms and/or ions, determine which has the

| Set | Property | Answer |
| :---: | :---: | :---: |
| $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$ | Highest ionization energy? | $\mathrm{Be}^{3+}$ |
| $\mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$ | Largest size? |  |
| $\mathrm{K}^{+}, \mathrm{Ca}^{+}, \mathrm{Ar}^{+}, \mathrm{Cl}^{+}, \mathrm{S}^{+}$ | Smallest ionization energy? |  |
| $\mathrm{V}, \mathrm{Mn}^{2+}, \mathrm{Ti}^{2+}, \mathrm{Cu}^{2+}$ | Smallest size? |  |
| $\mathrm{Se}^{2-}, \mathrm{Br}^{-}, \mathrm{Sr}^{2+}, \mathrm{Zr}^{4+}, \mathrm{Rb}^{+}$ | Smallest ionization energy? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Smallest size? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Largest ionization energy? |  |

## For each of the following sets of atoms and/or ions, determine which has the

| Set | Property | Answer |
| :---: | :---: | :---: |
| $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$ | Highest ionization energy? | $\mathrm{Be}^{3+}$ |
| $\mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$ | Largest size? | $\mathrm{S}^{2-}$ |
| $\mathrm{K}^{+}, \mathrm{Ca}^{+}, \mathrm{Ar}^{+}, \mathrm{Cl}^{+}, \mathrm{S}^{+}$ | Smallest ionization energy? |  |
| $\mathrm{V}, \mathrm{Mn}^{2+}, \mathrm{Ti}^{\mathrm{i}+}, \mathrm{Cu}^{2+}$ | Smallest size? |  |
| $\mathrm{Se}^{2-}, \mathrm{Br}^{-}, \mathrm{Sr}^{2+}, \mathrm{Zr}^{4+}, \mathrm{Rb}^{+}$ | Smallest ionization energy? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Smallest size? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Largest ionization energy? |  |

## For each of the following sets of atoms and/or ions, determine which has the

| Set | Property | Answer |
| :---: | :---: | :---: |
| $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$ | Highest ionization energy? | $\mathrm{Be}^{3+}$ |
| $\mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$ | Largest size? | $\mathrm{S}^{2-}$ |
| $\mathrm{K}^{+}, \mathrm{Ca}^{+}, \mathrm{Ar}^{+}, \mathrm{Cl}^{+}, \mathrm{S}^{+}$ | Smallest ionization energy? | $\mathrm{Ca}^{+}$ |
| $\mathrm{V}, \mathrm{Mn}^{2+}, \mathrm{Ti}^{2+}, \mathrm{Cu}^{2+}$ | Smallest size? |  |
| $\mathrm{Se}^{2-}, \mathrm{Br}^{-}, \mathrm{Sr}^{2+}, \mathrm{Zr}^{4+}, \mathrm{Rb}^{+}$ | Smallest ionization energy? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Smallest size? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Largest ionization energy? |  |

## For each of the following sets of atoms and/or ions, determine which has the

| Set | Property | Answer |
| :---: | :---: | :---: |
| $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$ | Highest ionization energy? | $\mathrm{Be}^{3+}$ |
| $\mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$ | Largest size? | $\mathrm{S}^{2-}$ |
| $\mathrm{K}^{+}, \mathrm{Ca}^{+}, \mathrm{Ar}^{+}, \mathrm{Cl}^{+}, \mathrm{S}^{+}$ | Smallest ionization energy? | $\mathrm{Ca}^{+}$ |
| $\mathrm{V}, \mathrm{Mn}^{2+}, \mathrm{Ti}^{2+}, \mathrm{Cu}^{2+}$ | Smallest size? | $\mathrm{Cu}^{2+}$ |
| $\mathrm{Se}^{2-}, \mathrm{Br}^{-}, \mathrm{Sr}^{2+}, \mathrm{Zr}^{4+}, \mathrm{Rb}^{+}$ | Smallest ionization energy? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Smallest size? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Largest ionization energy? |  |

## For each of the following sets of atoms and/or ions, determine which has the

| Set | Property | Answer |
| :---: | :---: | :---: |
| $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$ | Highest ionization energy? | $\mathrm{Be}^{3+}$ |
| $\mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$ | Largest size? | $\mathrm{S}^{2-}$ |
| $\mathrm{K}^{+}, \mathrm{Ca}^{+}, \mathrm{Ar}^{+}, \mathrm{Cl}^{+}, \mathrm{S}^{+}$ | Smallest ionization energy? | $\mathrm{Ca}^{+}$ |
| $\mathrm{V}, \mathrm{Mn}^{2+}, \mathrm{Ti}^{2+}, \mathrm{Cu}^{2+}$ | Smallest size? | $\mathrm{Cu}^{2+}$ |
| $\mathrm{Se}^{2-}, \mathrm{Br}^{-}, \mathrm{Sr}^{2+}, \mathrm{Zr}^{4+}, \mathrm{Rb}^{+}$ | Smallest ionization energy? | $\mathrm{Se}^{2-}$ |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Smallest size? |  |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Largest ionization energy? |  |

## For each of the following sets of atoms and/or ions, determine which has the

| Set | Property | Answer |
| :---: | :---: | :---: |
| $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$ | Highest ionization energy? | $\mathrm{Be}^{3+}$ |
| $\mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$ | Largest size? | $\mathrm{S}^{2-}$ |
| $\mathrm{K}^{+}, \mathrm{Ca}^{+}, \mathrm{Ar}^{+}, \mathrm{Cl}^{+}, \mathrm{S}^{+}$ | Smallest ionization energy? | $\mathrm{Ca}^{+}$ |
| $\mathrm{V}, \mathrm{Mn}^{2+}, \mathrm{Ti}^{2+}, \mathrm{Cu}^{2+}$ | Smallest size? | $\mathrm{Cu}^{2+}$ |
| $\mathrm{Se}^{2-}, \mathrm{Br}^{-}, \mathrm{Sr}^{2+}, \mathrm{Zr}^{4+}, \mathrm{Rb}^{+}$ | Smallest ionization energy? | $\mathrm{Se}^{2-}$ |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Smallest size? | $\mathrm{S}^{2+}$ |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Largest ionization energy? |  |

## For each of the following sets of atoms and/or ions, determine which has the

| Set | Property | Answer |
| :---: | :---: | :---: |
| $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$ | Highest ionization energy? | $\mathrm{Be}^{3+}$ |
| $\mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$ | Largest size? | $\mathrm{S}^{2-}$ |
| $\mathrm{K}^{+}, \mathrm{Ca}^{+}, \mathrm{Ar}^{+}, \mathrm{Cl}^{+}, \mathrm{S}^{+}$ | Smallest ionization energy? | $\mathrm{Ca}^{+}$ |
| $\mathrm{V}, \mathrm{Mn}^{2+}, \mathrm{Ti}^{2+}, \mathrm{Cu}^{2+}$ | Smallest size? | $\mathrm{Cu}^{2+}$ |
| $\mathrm{Se}^{2-}, \mathrm{Br}^{-}, \mathrm{Sr}^{2+}, \mathrm{Zr}^{4+}, \mathrm{Rb}^{+}$ | Smallest ionization energy? | $\mathrm{Se}^{2-}$ |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Smallest size? | $\mathrm{S}^{2+}$ |
| $\mathrm{S}^{2-}, \mathrm{S}, \mathrm{S}^{2+}, \mathrm{Cs}^{+}, \mathrm{Sr}^{2+}$ | Largest ionization energy? | $\mathrm{S}^{2+}$ |

For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |
| :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$ |
| V |  |  |
| Mn |  |  |
| $\mathrm{Mn}^{2+}$ |  |  |
| $\mathrm{Ti}^{2+}$ |  |  |
| Cu |  |  |
| $\mathrm{Cu}^{2+}$ |  |  |
| $\mathrm{Cu}^{+}$ |  |  |
| $\mathrm{Te}^{2-}$ |  |  |

For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |
| :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$ |
| V | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$ |
| Mn |  |  |
| $\mathrm{Mn}^{2+}$ |  |  |
| $\mathrm{Ti}^{2+}$ |  |  |
| Cu |  |  |
| $\mathrm{Cu}^{2+}$ |  |  |
| $\mathrm{Cu}^{+}$ |  |  |
| $\mathrm{Te}^{2-}$ |  |  |

For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |
| :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$ |
| V | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$ |
| Mn | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ | $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$ |
| $\mathrm{Mn}^{2+}$ |  |  |
| $\mathrm{Ti}^{2+}$ |  |  |
| Cu |  |  |
| $\mathrm{Cu}^{2+}$ |  |  |
| $\mathrm{Cu}^{+}$ |  |  |
| $\mathrm{Te}^{2-}$ |  |  |

## For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |
| :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$ |
| V | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | $[\mathrm{Ar}] 4 s^{2} 3 d^{3}$ |
| $\mathrm{Mn}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ | $[\mathrm{Ar}] 4 s^{2} 3 d^{5}$ |
| $\mathrm{Ti}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$ | $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ |
| $\mathrm{Cu}^{2+}$ |  | Special Notes: <br> 1. |
| Cu is an exception <br> and fills only half <br> an s orbital. <br> For transition <br> metal cations, <br> remove electrons <br> from s orbital first. |  |  |

## For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | [ Ne ] $3 s^{2} 3 p^{4}$ |  |
| V | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | [Ar]4s ${ }^{2} 3 \mathrm{~d}^{3}$ |  |
| Mn | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ | $[A r] 4 s^{2} 3 d^{5}$ |  |
| $\mathrm{Mn}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$ | $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ | Special Notes: <br> 1. Cu is an exception |
| Ti ${ }^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$ | [Ar]3d ${ }^{2}$ | and fills only half an s orbital. |
| Cu |  |  | 2. For transition metal cations, |
| $\mathrm{Cu}^{2+}$ |  |  | remove electrons from s orbital first. |
| $\mathrm{Cu}^{+}$ |  |  |  |

$\mathrm{Te}^{2-}$

## For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |
| :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$ |
| Vn | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | $[\mathrm{Ar}] 4 s^{2} 3 d^{3}$ |
| $\mathrm{Mn}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ | $[\mathrm{Ar}] 4 s^{2} 3 d^{5}$ |
| $\mathrm{Ti}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$ | $[\mathrm{Ar}] 3 d^{5}$ |
| Cu | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$ | $[\mathrm{Ar}] 3 d^{2}$ |
| $\mathrm{Cu}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$ | Special Notes: <br> 1. |
| Cu is an exception <br> and fills only half <br> an s orbital. <br> For transition <br> metal cations, <br> remove electrons <br> from s orbital first. |  |  |

$\mathrm{Te}^{2-}$

## For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | [ Ne ] $3 s^{2} 3 p^{4}$ |  |
| V | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | $[A r] 4 s^{2} 3 d^{3}$ |  |
| Mn | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ | $[A r] 4 s^{2} 3 d^{5}$ |  |
| $\mathrm{Mn}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$ | $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ | Special Notes: <br> 1. Cu is an exception |
| $\mathrm{Ti}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$ | [Ar]3d ${ }^{2}$ | and fills only half an s orbital. |
| Cu | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$ | $[\operatorname{Ar}] 4 s^{1} 3 d^{10}$ | 2. For transition metal cations, |
| $\mathrm{Cu}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$ | $[\mathrm{Ar}] 3 \mathrm{~d}{ }^{9}$ | remove electrons from s orbital first. |
| $\mathrm{Cu}^{+}$ |  |  |  |

$\mathrm{Te}^{2-}$

## For each of the following atoms or ions, give the electronic configuration.

| Atom/lon | Full configuration | Condensed configuration |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | [ Ne ] $3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$ |  |
| V | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | $[A r] 4 s^{2} 3 d^{3}$ |  |
| Mn | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ | $[A r] 4 s^{2} 3 d^{5}$ |  |
| $\mathrm{Mn}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$ | $[A r] 3 d^{5}$ | Special Notes: <br> 1. Cu is an exception |
| $\mathrm{Ti}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$ | $[\mathrm{Ar}] 3 \mathrm{~d}^{2}$ | and fills only half an s orbital. |
| Cu | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$ | $[A r] 4 s^{1} 3 d^{10}$ | 2. For transition metal cations, |
| $\mathrm{Cu}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$ | $[\mathrm{Ar}] 3 \mathrm{~d}^{9}$ | remove electrons from s orbital first. |
| $\mathrm{Cu}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$ | [Ar] $3 \mathrm{~d}^{10}$ |  |

## For each of the following atoms or ions, give the electronic configuration.



## For each of the following atoms or ions, determine the number of unpaired electrons.

| Atom/Ion | Full configuration | Condensed configuration | Unpaired electrons |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cl}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ | [ Ne ] $3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$ | 2 unpaired electrons |
| V | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ | $[A r] 4 s^{2} 3 d^{3}$ | 3 unpaired electrons |
| Mn | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ | $[A r] 4 s^{2} 3 d^{5}$ | 5 unpaired electrons |
| $\mathrm{Mn}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$ | $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$ | 5 unpaired electrons |
| $\mathrm{Ti}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$ | $[\mathrm{Ar}] 3 \mathrm{~d}^{2}$ | 2 unpaired electrons |
| Cu | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$ | $[\operatorname{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$ | 1 unpaired electrons |
| $\mathrm{Cu}^{2+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$ | [Ar] $3 \mathrm{~d}^{9}$ | 1 unpaired electrons |
| $\mathrm{Cu}^{+}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$ | [Ar] $\mathrm{d}^{10}$ | 0 unpaired electrons |
| Te ${ }^{2-}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6}$ | $[K r] 5 s^{2} 4 \mathrm{~d}^{10} 5 p^{6}$ | 0 unpaired electrons |

For most of these, the orbital diagram is as shown on the right (Mn, 25 electrons). The general principles are to: (1) determine how many electrons the atom/ion has, (2) fill from the lowest-energy orbitals first, and (3) fill across orbital before pairing electrons to maximize unpaired electrons.




I


III


II


IV


V


VI


VII
D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?

Structure III
Structure VI
Structure VII
BACK TO TOC

|  | $: N \equiv \stackrel{\oplus}{\mathrm{C}}-\ddot{\mathrm{O}}{ }_{\cdot}^{\ominus}$ |
| :---: | :---: |
| I | II |
|  |  |
| III | IV |
| $\ddot{\mathrm{O}}=\dot{\mathrm{N}}=\ddot{\mathrm{O}}$ |  |
| V | VI |

Consider the following seven Lewis structure to the left.
Assume that the total number of electrons in each structure is correct.
A. Which structures have an atom that breaks the octet rule?

Structure IV $\rightarrow$ lodine has 10 electrons
Structure V $\rightarrow$ Nitrogen has 9 electrons
Structure VII $\rightarrow$ Phosphorus has 10 electrons
B. Which structures have an incorrect formal charge assignment?

Structure II $\rightarrow$ Carbon should be " 0 "
Structure III $\rightarrow$ Boron should be "+1" and F (in B=F) should be " -1 "
C. Which structures could have another reasonable resonance structure that obeys the octet rule?
D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?

Structure III
Structure VI
Structure VII

Consider the following seven Lewis structure to the left.
Assume that the total number of electrons in each structure is correct.
A. Which structures have an atom that breaks the octet rule?

Structure IV $\rightarrow$ Iodine has 10 electrons
Structure $V \rightarrow$ Nitrogen has 9 electrons
Structure VII $\rightarrow$ Phosphorus has 10 electrons
B. Which structures have an incorrect formal charge assignment?

Structure II $\rightarrow$ Carbon should be " 0 "
Structure III $\rightarrow$ Boron should be " +1 " and $F($ in $B=F$ ) should be " -1 "
C. Which structures could have another reasonable resonance structure that obeys the octet rule?
Structures II and III
D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?

## Structure III

Consider the following seven Lewis structure to the left.
Assume that the total number of electrons in each structure is correct.
A. Which structures have an atom that breaks the octet rule?

Structure IV $\rightarrow$ Iodine has 10 electrons
Structure V $\rightarrow$ Nitrogen has 9 electrons
Structure VII $\rightarrow$ Phosphorus has 10 electrons
B. Which structures have an incorrect formal charge assignment?

Structure II $\rightarrow$ Carbon should be " 0 "
Structure III $\rightarrow$ Boron should be " +1 " and $F($ in $B=F$ ) should be " -1 "
C. Which structures could have another reasonable resonance structure that obeys the octet rule? Structures II and III
D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?

## Valence Bond Theory

SLIDE 41

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.
A. Which structures have only one $m$ bond?



II


IV




I

III


| I | II |
| :---: | :---: |
| : $\ddot{F}$ | : $\ddot{F}$ : |
|  | $: \ddot{\mathrm{F}}-\oplus \stackrel{\oplus}{\mathrm{F}}:$ |
| $\cdots \quad \_{F}$ | : F : |
| $\cdot$ |  |
| III | IV |




VI
C. Which structures contain an sp-hybridized atom?
D. Which structures contain an $\mathrm{sp}^{2}$-hybridized atom?
E. Which structures have a bond angle that is $180^{\circ}$ ?
(

B. Which structures would be paramagnetic?

## Structures III and VII

+ 

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.
A. Which structures have only one $\pi$ bond? Structures III and VII
B. Which structures would be paramagnetic?

Structure V $\rightarrow$ Nitrogen has one unpaired electron (radical)
C. Which structures contain an sp-hybridized atom?
D. Which structures contain an $\mathrm{sp}^{2}$-hybridized atom?
E. Which structures have a bond angle that is $180^{\circ}$ ?

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.
A. Which structures have only one $\pi$ bond? Structures III and VII
B. Which structures would be paramagnetic?

Structure V $\rightarrow$ Nitrogen has one unpaired electron (radical)
C. Which structures contain an sp-hybridized atom?

Structure II $\rightarrow$ Both C and N are sp-hybridized
D. Which structures contain an $\mathrm{sp}^{2}$-hybridized atom?
E. Which structures have a bond angle that is $180^{\circ}$ ?

Consider the following seven Lewis structure to the left.
Assume that the total number of electrons in each structure is correct.
A. Which structures have only one $\pi$ bond?

Structures III and VII
B. Which structures would be paramagnetic?

Structure V $\rightarrow$ Nitrogen has one unpaired electron (radical)
C. Which structures contain an sp-hybridized atom?

Structure II $\rightarrow$ Both C and N are sp-hybridized
D. Which structures contain an $\mathrm{sp}^{2}$-hybridized atom?

Structure III $\rightarrow B$ and the $F$ in $B=F$ are $p^{2}$-hybridized
Structure $V \rightarrow$ All atoms are $\mathrm{sp}^{2}$-hybridized
Structure $\mathrm{VI} \rightarrow$ The O atom in $(\mathrm{P}=\mathrm{O})$ is $\mathrm{sp}^{2}$-hybridized
E. Which structures have a bond angle that is $180^{\circ}$ ?

Consider the following seven Lewis structure to the left.
Assume that the total number of electrons in each structure is correct.
A. Which structures have only one $m$ bond?

Structures III and VII
B. Which structures would be paramagnetic?

Structure V $\rightarrow$ Nitrogen has one unpaired electron (radical)
C. Which structures contain an sp-hybridized atom?

Structure II $\rightarrow$ Both C and N are sp-hybridized
D. Which structures contain an $\mathrm{sp}^{2}$-hybridized atom?

Structure III $\rightarrow B$ and the $F$ in $B=F$ are $s^{2}$-hybridized
Structure $V \rightarrow$ All atoms are $\mathrm{sp}^{2}$-hybridized
Structure $\mathrm{VI} \rightarrow$ The O atom in $(\mathrm{P}=\mathrm{O})$ is $\mathrm{sp}^{2}$-hybridized
E. Which structures have a bond angle that is $180^{\circ}$ ?

Structure II $\rightarrow$ Linear geometry
Structure IV $\rightarrow$ See-saw geometry; one of the F-I-F bond angles is $180^{\circ}$

## Consider the molecular ion: $\left[\mathrm{GeCl}_{3}\right]^{-}$

A. Draw the Lewis structure including any lone pairs and formal charges.
B. Give the molecular geometry at the central atom.
C. State the hybridization at the central atom.
D. Determine if the molecule is polar or nonpolar.


| Steric Number at Ge | $=4(3$ atoms +1 lone pair $)$ |
| :--- | :--- |
| Molecular Geometry at Ge | $=$ Trigonal Pyramid |
| Hybridization at Ge | $=\mathrm{sp}^{3}$ |
| Polar? | $=$ Polar |

## Consider the molecular ion: $\left[\mathrm{FH}_{2}\right]^{+}$

A. Draw the Lewis structure including any lone pairs and formal charges.
B. Give the molecular geometry at the central atom.
C. State the hybridization at the central atom.
D. Determine if the molecule is polar or nonpolar.


| Steric Number at F | $=4(2$ atoms +2 lone pair $)$ |
| :--- | :--- |
| Molecular Geometry at F | $=$ Bent (or angular) |
| Hybridization at F | $=\mathrm{sp}^{3}$ |
| Polar? | $=$ Polar |

A. Draw the Lewis structure including any lone pairs and formal charges.
B. Give the molecular geometry at the central atom.
C. State the hybridization at the central atom.
D. Determine if the molecule is polar or nonpolar.


| Steric Number at Xe | $=6(4$ atoms +2 lone pair $)$ |
| :--- | :--- |
| Molecular Geometry at Xe | $=$ Square Planar |
| Hybridization at Xe | $=\mathrm{sp}^{3} \mathrm{~d}^{2}$ |
| Polar? | $=$ Nonpolar |

Consider the molecule Tamiflu, shown below.
For each of the circled atoms (labeled A-F), do the following:
i. Give the molecular geometry at the central atom.
ii. State the hybridization at the central atom.

A. Trigonal pyramidal $\mathrm{sp}^{3}$
B.
C.
D.
E.
F. N/A
G.

Consider the molecule Tamiflu, shown below.
For each of the circled atoms (labeled A-F), do the following:
i. Give the molecular geometry at the central atom.
ii. State the hybridization at the central atom.

A. Trigonal pyramidal $\mathrm{sp}^{3}$
B. Tetrahedral $\mathrm{sp}^{3}$
C.
D.
E.
F. N/A
G.

Consider the molecule Tamiflu, shown below.
For each of the circled atoms (labeled A-F), do the following:
i. Give the molecular geometry at the central atom.
ii. State the hybridization at the central atom.

A. Trigonal pyramidal $\mathrm{sp}^{3}$
B. Tetrahedral $\mathrm{sp}^{3}$
C. Trigonal planar $\mathrm{sp}^{2}$
D.
E.
F. N/A
G.

Consider the molecule Tamiflu, shown below.
For each of the circled atoms (labeled A-F), do the following:
i. Give the molecular geometry at the central atom.
ii. State the hybridization at the central atom.

A. Trigonal pyramidal
$\mathrm{sp}^{3}$
B. Tetrahedral
$\mathrm{sp}^{3}$
C. Trigonal planar $\mathrm{sp}^{2}$
D. Trigonal planar
E.
F. N/A
G.

Consider the molecule Tamiflu, shown below.
For each of the circled atoms (labeled A-F), do the following:
i. Give the molecular geometry at the central atom.
ii. State the hybridization at the central atom.

A. Trigonal pyramidal
$s p^{3}$
B. Tetrahedral
$s p^{3}$
C. Trigonal planar $\mathrm{sp}^{2}$
D. Trigonal planar
$s p^{2}$
E. Trigonal planar
F. N/A
G.

Consider the molecule Tamiflu, shown below.
For each of the circled atoms (labeled A-F), do the following:
i. Give the molecular geometry at the central atom.
ii. State the hybridization at the central atom.


| A. Trigonal pyramidal | $\mathrm{sp}^{3}$ |
| :--- | :--- |
| B. Tetrahedral | $\mathrm{sp}^{3}$ |
| C. Trigonal planar | $\mathrm{sp}^{2}$ |
| D. Trigonal planar | $\mathrm{sp}^{2}$ |
| E. Trigonal planar | $\mathrm{sp}^{2}$ |
| F. N/A | $\mathrm{sp}^{2}$ |

Consider the molecule Tamiflu, shown below.
For each of the circled atoms (labeled A-F), do the following:
i. Give the molecular geometry at the central atom.
ii. State the hybridization at the central atom.


| A. Trigonal pyramidal | $\mathrm{sp}^{3}$ |
| :--- | :--- |
| B. Tetrahedral | $\mathrm{sp}^{3}$ |
| C. Trigonal planar | $\mathrm{sp}^{2}$ |
| D. Trigonal planar | $\mathrm{sp}^{2}$ |
| E. Trigonal planar | $\mathrm{sp}^{2}$ |
| F. N/A | $\mathrm{sp}^{2}$ |
| G. Bent (or angular) | $\mathrm{sp}^{3}$ |



Consider the cyanate ion, $\mathrm{CN}^{-}$, and its molecular orbital diagram shown to the left.
A. Using the diagram on the left, fill in the electrons for the molecular orbitals of $\mathrm{CN}^{-}$.
You do not need to fill in the electrons for the atomic orbitals.
B. Determine the bond order for $\mathrm{CN}^{-}$based on your diagram.
C. Do you expect $\mathrm{CN}^{-}$to be paramagnetic or diamagnetic?
D. Do you expect neutral CN to be paramagnetic or diamagnetic?
E. Do you expect $\mathrm{CN}^{3-}$ to be paramagnetic or diamagnetic?



Consider the cyanate ion, $\mathrm{CN}^{-}$, and its molecular orbital diagram shown to the left.
A. Using the diagram on the left, fill in the electrons for the molecular orbitals of $\mathrm{CN}^{-}$.
You do not need to fill in the electrons for the atomic orbitals.
B. Determine the bond order for $\mathrm{CN}^{-}$based on your diagram.
$B O=1 / 2[$ bonding - antibonding $]=1 / 2[8-2]=3$ (triple bond)
C. Do you expect $\mathrm{CN}^{-}$to be paramagnetic or diamagnetic?
D. Do you expect neutral CN to be paramagnetic or diamagnetic?
E. Do you expect $\mathrm{CN}^{3-}$ to be paramagnetic or diamagnetic?


Consider the cyanate ion, $\mathrm{CN}^{-}$, and its molecular orbital diagram shown to the left.
A. Using the diagram on the left, fill in the electrons for the molecular orbitals of $\mathrm{CN}^{-}$.
You do not need to fill in the electrons for the atomic orbitals.
B. Determine the bond order for $\mathrm{CN}^{-}$based on your diagram.
$B O=1 / 2[$ bonding - antibonding $]=1 / 2[8-2]=3$ (triple bond)
C. Do you expect $\mathrm{CN}^{-}$to be paramagnetic or diamagnetic?

Diamagnetic: all electrons paired
D. Do you expect neutral CN to be paramagnetic or diamagnetic?
E. Do you expect $\mathrm{CN}^{3-}$ to be paramagnetic or diamagnetic?


Consider the cyanate ion, $\mathrm{CN}^{-}$, and its molecular orbital diagram shown to the left.
A. Using the diagram on the left, fill in the electrons for the molecular orbitals of $\mathrm{CN}^{-}$.
You do not need to fill in the electrons for the atomic orbitals.
B. Determine the bond order for $\mathrm{CN}^{-}$based on your diagram.
$B O=1 / 2[$ bonding - antibonding $]=1 / 2[8-2]=3$ (triple bond)
C. Do you expect $\mathrm{CN}^{-}$to be paramagnetic or diamagnetic?

Diamagnetic: all electrons paired
D. Do you expect neutral CN to be paramagnetic or diamagnetic?

Paramagnetic: one unpaired electron in $\sigma_{2 p}$ orbital
E. Do you expect $\mathrm{CN}^{3-}$ to be paramagnetic or diamagnetic?


Consider the cyanate ion, $\mathrm{CN}^{-}$, and its molecular orbital diagram shown to the left.
A. Using the diagram on the left, fill in the electrons for the molecular orbitals of $\mathrm{CN}^{-}$.
You do not need to fill in the electrons for the atomic orbitals.
B. Determine the bond order for $\mathrm{CN}^{-}$based on your diagram.
$B O=1 / 2[$ bonding - antibonding $]=1 / 2[8-2]=3$ (triple bond)
C. Do you expect $\mathrm{CN}^{-}$to be paramagnetic or diamagnetic?

Diamagnetic: all electrons paired
D. Do you expect neutral CN to be paramagnetic or diamagnetic?

Paramagnetic: one unpaired electron in $\sigma_{2 p}$ orbital
E. Do you expect CN ${ }^{3-}$ to be paramagnetic or diamagnetic?

Paramagnetic: two unpaired electrons in two $\pi^{*}{ }_{2 p}$ orbitals

## Arrange the following sets of compounds in order of increasing

$\qquad$ -

| Set | Property | Ordered Set |
| :---: | :---: | :---: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}, \mathrm{CH}_{3} \mathrm{OCH}_{(\mathrm{D}, \mathrm{~F})}, \mathrm{CH}_{3} \underset{(\mathrm{~F})}{\mathrm{CH}_{2} \mathrm{CH}_{3}}$ | Vapor pressure at 298 K | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |
| $\mathrm{O}_{2}, \mathrm{CuCl}, \mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{OH}$ | Solubility in water |  |


| $\mathrm{BaCl}_{2}, \mathrm{H}_{2}, \mathrm{CO}, \mathrm{Kr}, \mathrm{HF}$ | Boiling point |
| :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{Cl}_{2}, \mathrm{~N}_{2}, \mathrm{CH} \mathrm{Cl}_{3} \mathrm{Cl}$ | Melting point |
| $\mathrm{N}_{2}, \mathrm{KBr}, \mathrm{O}_{2}, \mathrm{HCN}$ | Boiling point |
| $\mathrm{FeO}, \mathrm{NaCl}, \mathrm{CF}_{4}, \mathrm{CH}_{3} \mathrm{OH}$ | Melting point |
| $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{H}_{2} \mathrm{CO}$ | Surface Tension |

## Strong IMFs lead to:

- Higher boiling points
- Higher melting points
- Smaller vapor pressure
- Greater surface tension

Surface Tension

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows:

| Ion-Ion <br> Ion-Dipole <br> (A) <br> (B) | Hydrogen Bonding <br> (C) | Dipole-Dipole <br> (D) | Dipole-Induced Dipole (E) | Dispersion Forces <br> (F) |
| :---: | :---: | :---: | :---: | :---: |
| If two compounds both have ion-ion interactions, the interactions are stronger for higher charges $(q)$ and smaller ions (d) via: $E \propto \frac{q_{1} q_{2}}{d}$ | (C) <br> Can only occur for this specific arrangement: <br> (A): $: \cdots \cdots-$ - $B$ <br> $A \& B=N, O$, or $F$ | If two compounds b interactions, intera larger dipoles (gre | pole-dipole tronger for dispersio erences) more | ounds both have ctions are stronger for (heavier) and more ut molecules. |

## Arrange the following sets of compounds in order of increasing

$\qquad$ .

| Set | Property | Ordered Set |
| :---: | :---: | :---: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}, \mathrm{CH}_{3} \mathrm{OCH}_{(\mathrm{D}, \mathrm{~F})}, \mathrm{CH}_{3} \underset{(\mathrm{~F})}{\mathrm{CH}_{2} \mathrm{CH}_{3}}$ | Vapor pressure at 298 K | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |
| $\mathrm{O}_{2}, \mathrm{CuCl}, \mathrm{Br}_{2}, \mathrm{CH}_{3} \mathrm{OH}$ | Solubility in water | $\mathrm{CuCl}(\mathrm{s}) ; \mathrm{O}_{2}<\mathrm{Br}_{2}<\mathrm{CH}_{3} \mathrm{OH}$ |

$$
(\mathrm{E}, \mathrm{~F}) \quad \text { (solid) }(\mathrm{E}, \mathrm{~F}) \quad(\mathrm{C}, \mathrm{D}, \mathrm{~F})
$$

$$
\mathrm{BaCl}_{2}, \mathrm{H}_{2}, \mathrm{CO}, \mathrm{Kr}, \mathrm{HF}
$$

$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{Cl}_{2}, \mathrm{~N}_{2}, \mathrm{CH}_{3} \mathrm{Cl}$
$\mathrm{N}_{2}, \mathrm{KBr}, \mathrm{O}_{2}, \mathrm{HCN}$
$\mathrm{FeO}, \mathrm{NaCl}, \mathrm{CF}_{4}, \mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{H}_{2} \mathrm{CO}$

Boiling point
Melting point
Boiling point

Melting point

Surface Tension

## Strong IMFs lead to:

- Higher boiling points
- Higher melting points
- Smaller vapor pressure
- Greater surface tension

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows:

| Ion-Ion <br> Ion-Dipole <br> (A) <br> (B) | Hydrogen Bonding <br> (C) | Dipole-Dipole <br> (D) | Dipole-Induced Dipole (E) | Dispersion Forces <br> (F) |
| :---: | :---: | :---: | :---: | :---: |
| If two compounds both have ion-ion interactions, the interactions are stronger for higher charges $(q)$ and smaller ions ( $d$ ) via: $E \propto \frac{q_{1} q_{2}}{d}$ | Can only occur for this specific arrangement: $\begin{aligned} & \text { (A): } \cdots \cdots \cdot B-B \\ & A \& B=N, O, \text { or } F \end{aligned}$ | If two compounds bo interactions, interac larger dipoles (grea | pole-dipole If tw <br> tronger for dispersio <br> erences). more | ounds both have actions are stronger for (heavier) and more out molecules. |

## Arrange the following sets of compounds in order of increasing

$\qquad$ -

| Set | Property | Ordered Set |  |
| :---: | :---: | :---: | :---: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OCH}_{3}}, \mathrm{CH}_{3} \mathrm{CH}_{(\mathrm{F})} \mathrm{CH}_{3}$ | Vapor pressure at 298 K | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |  |
|  | Solubility in water | $\mathrm{CuCl}(s) ; \mathrm{O}_{2}<\mathrm{Br}_{2}<\mathrm{CH}_{3} \mathrm{OH}$ |  |
| $\underset{(\mathrm{A})}{\mathrm{BaCl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{~F})}{\mathrm{CO}} \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{Kr}}$ | Boiling point | $\mathrm{H}_{2}<\mathrm{Kr}<\mathrm{CO}<\mathrm{HF}<\mathrm{BaCl}_{2}$ | Strong IMFs lead to: |
| $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{Cl}_{2}, \mathrm{~N}_{2}, \mathrm{CH}_{3} \mathrm{Cl}$ | Melting point |  | - Higher boiling points <br> - Higher melting points |
| $\mathrm{N}_{2}, \mathrm{KBr}, \mathrm{O}_{2}, \mathrm{HCN}$ | Boiling point |  | - Smaller vapor pressure <br> - Greater surface tension |
| FeO, $\mathrm{NaCl}, \mathrm{CF}_{4}, \mathrm{CH}_{3} \mathrm{OH}$ | Melting point |  |  |
| $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{H}_{2} \mathrm{CO}$ | Surface Tension |  |  |

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows:

| Ion-Ion <br> Ion-Dipole <br> (A) <br> (B) | Hydrogen Bonding <br> (C) | Dipole-Dipole <br> (D) | Dipole-Induced Dipole (E) | Dispersion Forces <br> (F) |
| :---: | :---: | :---: | :---: | :---: |
| If two compounds both have ion-ion interactions, the interactions are stronger for higher charges $(q)$ and smaller ions (d) via: $E \propto \frac{q_{1} q_{2}}{d}$ | Can only occur for this specific arrangement: $\begin{aligned} & \text { (A): } \cdots \cdots \cdot-B-B, O, \text { or } F \\ & A \& B=N, O \end{aligned}$ | If two compounds bo interactions, interac larger dipoles (grea | $\begin{array}{lc}\text { pole-dipole } & \text { If tw } \\ \text { tronger for } & \text { dispersio } \\ \text { erences). } & \text { more }\end{array}$ | ounds both have ctions are stronger for (heavier) and more ut molecules. |

## Arrange the following sets of compounds in order of increasing

$\qquad$ .

| Set | Property | Ordered Set |  |
| :---: | :---: | :---: | :---: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OCH}_{3}}, \mathrm{CH}_{3} \mathrm{CH}_{(\mathrm{F})} \mathrm{CH}_{3}$ | Vapor pressure at 298 K | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |  |
|  | Solubility in water | $\mathrm{CuCl}(s) ; \mathrm{O}_{2}<\mathrm{Br}_{2}<\mathrm{CH}_{3} \mathrm{OH}$ |  |
| $\underset{(\mathrm{A})}{\mathrm{BaCl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{~F})}{\mathrm{CO}} \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{Kr}}$ | Boiling point | $\mathrm{H}_{2}<\mathrm{Kr}<\mathrm{CO}<\mathrm{HF}<\mathrm{BaCl}_{2}$ | Strong IMFs lead to: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OH}}, \underset{(\mathrm{~F})}{\mathrm{Cl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{N}_{2}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{Cl}}$ | Melting point | $\mathrm{N}_{2}<\mathrm{Cl}_{2}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{OH}$ | - Higher boiling points <br> - Higher melting points |
| $\mathrm{N}_{2}, \mathrm{KBr}, \mathrm{O}_{2}, \mathrm{HCN}$ | Boiling point |  | - Smaller vapor pressure <br> - Greater surface tension |
| FeO, $\mathrm{NaCl}, \mathrm{CF}_{4}, \mathrm{CH}_{3} \mathrm{OH}$ | Melting point |  |  |
| $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{H}_{2} \mathrm{CO}$ | Surface Tension |  |  |

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows:

| Ion-Ion <br> Ion-Dipole <br> (A) <br> (B) | Hydrogen Bonding <br> (C) | Dipole-Dipole <br> (D) | Dipole-Induced Dipole (E) | Dispersion Forces <br> (F) |
| :---: | :---: | :---: | :---: | :---: |
| If two compounds both have ion-ion interactions, the interactions are stronger for higher charges $(q)$ and smaller ions (d) via: $E \propto \frac{q_{1} q_{2}}{d}$ | Can only occur for this specific arrangement: $\begin{aligned} & \text { (A): } \cdots \cdots \cdot-B-B, O, \text { or } F \\ & A \& B=N, O \end{aligned}$ | If two compounds bo interactions, interac larger dipoles (grea | $\begin{array}{lc}\text { pole-dipole } & \text { If tw } \\ \text { tronger for } & \text { dispersio } \\ \text { erences). } & \text { more }\end{array}$ | ounds both have ctions are stronger for (heavier) and more ut molecules. |

## Arrange the following sets of compounds in order of increasing

$\qquad$ .

| Set | Property | Ordered Set |  |
| :---: | :---: | :---: | :---: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OCH}_{3}}, \mathrm{CH}_{3} \mathrm{CH}_{(\mathrm{F})} \mathrm{CH}_{3}$ | Vapor pressure at 298 K | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |  |
| $\underset{(\mathrm{E}, \mathrm{~F})}{\mathrm{O}_{2}, \mathrm{CuCl}, \mathrm{Culid}^{(\mathrm{CE}, \mathrm{~F})}, \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{Br}_{2}}, \mathrm{CH}_{3} \mathrm{OH}}$ | Solubility in water | $\mathrm{CuCl}(\mathrm{s}) ; \mathrm{O}_{2}<\mathrm{Br}_{2}<\mathrm{CH}_{3} \mathrm{OH}$ |  |
| $\underset{(\mathrm{A})}{\mathrm{BaCl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{H}_{2}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CO}} \underset{(\mathrm{~F})}{\mathrm{Cr}, \mathrm{C}, \mathrm{D}, \mathrm{~F})}$ | Boiling point | $\mathrm{H}_{2}<\mathrm{Kr}<\mathrm{CO}<\mathrm{HF}<\mathrm{BaCl}_{2}$ | Strong IMFs lead to: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OH}}, \underset{(\mathrm{~F})}{\mathrm{Cl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{N}_{2}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{Cl}}$ | Melting point | $\mathrm{N}_{2}<\mathrm{Cl}_{2}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{OH}$ | - Higher boiling points <br> - Higher melting points |
| $\underset{(\mathrm{F})}{\mathrm{N}_{2},} \underset{(\mathrm{~A})}{\mathrm{KBr}, \underset{(\mathrm{~F})}{\mathrm{O}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{O}}, \mathrm{HCN}}$ | Boiling point | $\mathrm{N}_{2}<\mathrm{O}_{2}<\mathrm{HCN}<\mathrm{KBr}$ | - Smaller vapor pressure <br> - Greater surface tension |
| $\mathrm{FeO}, \mathrm{NaCl}, \mathrm{CF}_{4}, \mathrm{CH}_{3} \mathrm{OH}$ | Melting point |  |  |
| $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{H}_{2} \mathrm{CO}$ | Surface Tension |  |  |

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows:

| Ion-Ion <br> Ion-Dipole <br> (A) <br> (B) | Hydrogen Bonding <br> (C) | Dipole-Dipole <br> (D) | Dipole-Induced Dipole (E) | Dispersion Forces <br> (F) |
| :---: | :---: | :---: | :---: | :---: |
| If two compounds both have ion-ion interactions, the interactions are stronger for higher charges $(q)$ and smaller ions (d) via: $E \propto \frac{q_{1} q_{2}}{d}$ | Can only occur for this specific arrangement: $\begin{aligned} & \text { (A): } \cdots \cdots \cdot-B-B, O, \text { or } F \\ & A \& B=N, O \end{aligned}$ | If two compounds bo interactions, interac larger dipoles (grea | $\begin{array}{lc}\text { pole-dipole } & \text { If tw } \\ \text { tronger for } & \text { dispersio } \\ \text { erences). } & \text { more }\end{array}$ | ounds both have ctions are stronger for (heavier) and more ut molecules. |

## Arrange the following sets of compounds in order of increasing

$\qquad$ .

| Set | Property | Ordered Set |  |
| :---: | :---: | :---: | :---: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OCH}_{3}}, \mathrm{CH}_{3} \mathrm{CH}_{(\mathrm{F})} \mathrm{CH}_{3}$ | Vapor pressure at 298 K | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}$ |  |
| $\underset{(\mathrm{E}, \mathrm{~F})}{\mathrm{O}_{2}, \mathrm{CuCl}, \mathrm{Culid}^{(\mathrm{CE}, \mathrm{~F})}, \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{Br}_{2}}, \mathrm{CH}_{3} \mathrm{OH}}$ | Solubility in water | $\mathrm{CuCl}(\mathrm{s}) ; \mathrm{O}_{2}<\mathrm{Br}_{2}<\mathrm{CH}_{3} \mathrm{OH}$ |  |
| $\underset{(\mathrm{A})}{\mathrm{BaCl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{~F})}{\mathrm{CO}} \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{Kr},} \underset{\mathrm{HF}}{\mathrm{H}}$ | Boiling point | $\mathrm{H}_{2}<\mathrm{Kr}<\mathrm{CO}<\mathrm{HF}<\mathrm{BaCl}_{2}$ | Strong IMFs lead to: <br> - Higher boiling points <br> - Higher melting points <br> - Smaller vapor pressure <br> - Greater surface tension |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OH}}, \underset{(\mathrm{~F})}{\mathrm{Cl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{N}_{2}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{Cl}}$ | Melting point | $\mathrm{N}_{2}<\mathrm{Cl}_{2}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{OH}$ |  |
| $\underset{(\mathrm{F})}{\mathrm{N}_{2}}, \underset{(\mathrm{~A})}{\mathrm{KBr}, \underset{(\mathrm{~F})}{\mathrm{O}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{O}}}$ | Boiling point | $\mathrm{N}_{2}<\mathrm{O}_{2}<\mathrm{HCN}<\mathrm{KBr}$ |  |
| $\underset{(\mathrm{A})}{\mathrm{FeO}}, \underset{(\mathrm{~A})}{\mathrm{NaCl}}, \underset{(\mathrm{~F})}{\mathrm{CF}_{4}}, \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OH}}$ | Melting point | $\mathrm{CF}_{4}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{NaCl}<\mathrm{FeO}$ |  |
| $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{H}_{2} \mathrm{CO}$ | Surface Tension |  |  |

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows:

| Ion-Ion <br> Ion-Dipole <br> (A) <br> (B) | Hydrogen Bonding <br> (C) | Dipole-Dipole <br> (D) | Dipole-Induced Dipole (E) | Dispersion Forces <br> (F) |
| :---: | :---: | :---: | :---: | :---: |
| If two compounds both have ion-ion interactions, the interactions are stronger for higher charges $(q)$ and smaller ions (d) via: $E \propto \frac{q_{1} q_{2}}{d}$ | Can only occur for this specific arrangement: $\begin{aligned} & \text { (A): } \cdots \cdots \cdot-B-B, O, \text { or } F \\ & A \& B=N, O \end{aligned}$ | If two compounds bo interactions, interac larger dipoles (grea | $\begin{array}{lc}\text { pole-dipole } & \text { If tw } \\ \text { tronger for } & \text { dispersio } \\ \text { erences). } & \text { more }\end{array}$ | ounds both have ctions are stronger for (heavier) and more ut molecules. |

## Arrange the following sets of compounds in order of increasing

$\qquad$ .

| Set | Property | Ordered Set |  |
| :---: | :---: | :---: | :---: |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OCH}_{3}}, \mathrm{CH}_{3} \mathrm{CH}_{(\mathrm{F})} \mathrm{CH}_{3}$ | Vapor pressure at 298 K | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}^{2}$ |  |
| $\left.\underset{(\mathrm{E}, \mathrm{~F})}{\mathrm{O}_{2},} \mathrm{CuCl}, \mathrm{colid}\right)_{(\mathrm{E}, \mathrm{~F})}^{\mathrm{CuCl}}, \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{Br}_{2}}$ | Solubility in water | $\mathrm{CuCl}(\mathrm{s}) ; \mathrm{O}_{2}<\mathrm{Br}_{2}<\mathrm{CH}_{3} \mathrm{OH}$ |  |
| $\underset{(\mathrm{A})}{\mathrm{BaCl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{H}}, \underset{(\mathrm{~F})}{\mathrm{CO}} \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{Kr}}$ | Boiling point | $\mathrm{H}_{2}<\mathrm{Kr}<\mathrm{CO}<\mathrm{HF}<\mathrm{BaCl}_{2}$ | Strong IMFs lead to: <br> - Higher boiling points <br> - Higher melting points <br> - Smaller vapor pressure <br> - Greater surface tension |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OH}} \underset{(\mathrm{~F})}{\mathrm{Cl}_{2}}, \underset{(\mathrm{~F})}{\mathrm{N}_{2}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{Cl}}$ | Melting point | $\mathrm{N}_{2}<\mathrm{Cl}_{2}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{OH}$ |  |
| $\underset{(F)}{\mathrm{N}_{2},} \underset{\text { (A) }}{\mathrm{KBr}, \underset{(\mathrm{~F})}{\mathrm{O}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{O}}}$ | Boiling point | $\mathrm{N}_{2}<\mathrm{O}_{2}<\mathrm{HCN}<\mathrm{KBr}$ |  |
| $\underset{(\mathrm{A})}{\mathrm{FeO}}, \underset{(\mathrm{~A})}{\mathrm{NaCl}}, \underset{(\mathrm{~F})}{\mathrm{CF}_{4}}, \underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OH}}$ | Melting point | $\mathrm{CF}_{4}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{NaCl}<\mathrm{FeO}$ |  |
| $\underset{(\mathrm{C}, \mathrm{D}, \mathrm{~F})}{\mathrm{CH}_{3} \mathrm{OH}}, \underset{(\mathrm{~F})}{\mathrm{CH}_{3} \mathrm{CH}_{3}}, \underset{(\mathrm{D}, \mathrm{~F})}{\mathrm{H}_{2} \mathrm{CO}}$ | Surface Tension | $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{H}_{2} \mathrm{CO}<\mathrm{CH}_{3} \mathrm{OH}$ |  |

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows:

| Ion-Ion <br> Ion-Dipole <br> (A) <br> (B) | Hydrogen Bonding <br> (C) | Dipole-Dipole <br> (D) | Dipole-Induced Dipole (E) | Dispersion Forces <br> (F) |
| :---: | :---: | :---: | :---: | :---: |
| If two compounds both have ion-ion interactions, the interactions are stronger for higher charges $(q)$ and smaller ions (d) via: $E \propto \frac{q_{1} q_{2}}{d}$ | Can only occur for this specific arrangement: $\begin{aligned} & \text { (A): } \cdots \cdots \cdot B-B \\ & A \& B=N, O \text { or } F \end{aligned}$ | If two compounds bo interactions, interac larger dipoles (gre | pole-dipole If tw tronger for dispersio ferences). more | ounds both have actions are stronger for (heavier) and more out molecules. |

For each of the following molecules, determine the main intermolecular interactions:

| Molecule | Intermolecular interactions with itself | Intermolecular interactions with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | Intermolecular interactions with methane $\left(\mathrm{CH}_{4}\right)$ | Lewis Structure (Dipole drawn if polar) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CCl}_{4}$ |  |  |  |  |

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$

Kr
$\mathrm{CO}_{2}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

For each of the following molecules, determine the main intermolecular interactions:

| Molecule | Intermolecular interactions with itself | Intermolecular interactions with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | Intermolecular interactions with methane $\left(\mathrm{CH}_{4}\right)$ | Lewis Structure (Dipole drawn if polar) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CCl}_{4}$ | Dispersion | Dipole-Induced Dipole | Dispersion |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ |  |  |  |  |

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$

Kr
$\mathrm{CO}_{2}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

## For each of the following molecules, determine the main intermolecular interactions:

| Molecule | Intermolecular interactions <br> with itself | Intermolecular interactions <br> with water $\left(\mathbf{H}_{2} \mathbf{O}\right)$ | Intermolecular interactions <br> with methane ( $\mathbf{C H}_{4}$ ) |
| :---: | :---: | :---: | :---: |
| $\mathbf{N H}_{3}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |
| (Dipole drawn if polar) |  |  |  |

Kr
$\mathrm{CO}_{2}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

## For each of the following molecules, determine the main intermolecular interactions:

| Molecule | Intermolecular interactions with itself | Intermolecular interactions with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | Intermolecular interactions with methane $\left(\mathrm{CH}_{4}\right)$ | Lewis Structure <br> (Dipole drawn if polar) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CCl}_{4}$ | Dispersion | Dipole-Induced Dipole | Dispersion |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ | Dipole-Dipole | Hydrogen Bonding | Dipole-Induced Dipole |  |
| Kr |  |  |  |  |

## For each of the following molecules, determine the main intermolecular interactions:

| Molecule | Intermolecular interactions with itself | Intermolecular interactions with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | Intermolecular interactions with methane $\left(\mathrm{CH}_{4}\right)$ | Lewis Structure <br> (Dipole drawn if polar) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CCl}_{4}$ | Dispersion | Dipole-Induced Dipole | Dispersion |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ | Dipole-Dipole | Hydrogen Bonding | Dipole-Induced Dipole |  |
| Kr | Dispersion | Dipole-Induced Dipole | Dispersion | Kr nonpolar |

## For each of the following molecules, determine the main intermolecular interactions:

| Molecule | Intermolecular interactions with itself | Intermolecular interactions with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | Intermolecular interactions with methane $\left(\mathrm{CH}_{4}\right)$ | Lewis Structure (Dipole drawn if polar) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CCl}_{4}$ | Dispersion | Dipole-Induced Dipole | Dispersion |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ | Dipole-Dipole | Hydrogen Bonding | Dipole-Induced Dipole |  |
| Kr | Dispersion | Dipole-Induced Dipole | Dispersion | Kr nonpolar |
| $\mathrm{CO}_{2}$ | Dispersion | Dipole-Induced Dipole | Dispersion | $\ddot{\mathrm{O}} \underset{\sim}{\text { nonpolar }}=\mathrm{C}=\ddot{\mathrm{O}}$ |

## For each of the following molecules, determine the main intermolecular interactions:

| Molecule | Intermolecular interactions with itself | Intermolecular interactions with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ | Intermolecular interactions with methane $\left(\mathrm{CH}_{4}\right)$ | Lewis Structure (Dipole drawn if polar) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CCI}_{4}$ | Dispersion | Dipole-Induced Dipole | Dispersion |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ | Hydrogen Bonding | Hydrogen Bonding | Dipole-Induced Dipole |  |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ | Dipole-Dipole | Hydrogen Bonding | Dipole-Induced Dipole |  |
| Kr | Dispersion | Dipole-Induced Dipole | Dispersion | Kr nonpolar |
| $\mathrm{CO}_{2}$ | Dispersion | Dipole-Induced Dipole | Dispersion | $\ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{o}} \mathrm{O}$ |
| $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ | Dipole-Dipole | Dipole-Dipole | Dipole-Induced Dipole |  |

Consider the phase diagram for sulfur $\left(\mathrm{S}_{8}\right)$, which has three triple points.

A. At each triple point, determine which phases would exist in equilibrium.
(a): Sulfur-I, Sulfur-II, Gas
(b): Sulfur-II, Gas, Liquid
(c): Sulfur-I, Sulfur-II, Liquid
B. At which triple point will solid Sulfur-II float on top of liquid sulfur?
C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense?
D. Can either of the two solid states sublime at atmospheric pressure? Which?

Consider the phase diagram for sulfur $\left(\mathrm{S}_{8}\right)$, which has three triple points.

A. At each triple point, determine which phases would exist in equilibrium.
(a): Sulfur-I, Sulfur-II, Gas
(b): Sulfur-II, Gas, Liquid
(c): Sulfur-I, Sulfur-II, Liquid
B. At which triple point will solid Sulfur-II float on top of liquid sulfur? None
C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense?
D. Can either of the two solid states sublime at atmospheric pressure? Which?

Consider the phase diagram for sulfur $\left(\mathrm{S}_{8}\right)$, which has three triple points.

A. At each triple point, determine which phases would exist in equilibrium.
(a): Sulfur-I, Sulfur-II, Gas
(b): Sulfur-II, Gas, Liquid
(c): Sulfur-I, Sulfur-II, Liquid
B. At which triple point will solid Sulfur-II float on top of liquid sulfur? None
C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense? Sulfur-II
D. Can either of the two solid states sublime at atmospheric pressure? Which?

Consider the phase diagram for sulfur $\left(\mathrm{S}_{8}\right)$, which has three triple points.

A. At each triple point, determine which phases would exist in equilibrium.
(a): Sulfur-I, Sulfur-II, Gas
(b): Sulfur-II, Gas, Liquid
(c): Sulfur-I, Sulfur-II, Liquid
B. At which triple point will solid Sulfur-II float on top of liquid sulfur? None
C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense? Sulfur-II
D. Can either of the two solid states sublime at atmospheric pressure? Which?
No, Sulfur-II can sublime at <0.0005 atm. Sulfur-I sublimes at $<0.0001$ atm.


[^0]:    For the ions, consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

[^1]:    For the ions, consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

[^2]:    For the ions, consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

[^3]:    For the ions, consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

[^4]:    For the ions, consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

