EXAM 3 Review Answers

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2018

www.mioy.org/chem161

Table of Contents

CHEMISTRY 161 – Fall 2018 Dr. Huynh

Click on the slide number corresponding to the problem for which you would like the solution:

	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>
<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>
<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>
<u>19</u>	<u>20</u>	<u>21</u>	<u>22</u>	<u>23</u>	

Photon A has a frequency of 2.45 GHz.Photon B has a wavelength of 965 nm.Which photon has greater energy?

There are three ways you can solve this problem since we can inter-relate energy (*E*), wavelength (λ), and frequency (*v*) via:

$$E = \frac{hc}{\lambda} = h\nu$$
 ; where $c = \lambda\nu$

Comparing Energies	Comparing Wavelengths	Comparing Frequencies
$E_{A} = hv_{A}$ = $\left(6.626 \times 10^{-34} \frac{J}{s}\right) (2.45 \times 10^{9} \text{ Hz})$ $E_{A} = 1.62 \times 10^{-24} \text{ J}$	$c = \lambda_A \nu_A$ 3.00 × 10 ⁸ $\frac{m}{s} = \lambda_A \times (2.45 \times 10^9 \text{ Hz})$ $\lambda_A = 0.122 \text{ m}$	$v_{\rm A} = 2.45 \times 10^9 {\rm Hz}$
$E_{\rm B} = \frac{hc}{\lambda_{\rm B}}$ = $\frac{\left(6.626 \times 10^{-34} \frac{\text{J}}{\text{s}}\right) \left(3.00 \times 10^8 \frac{\text{m}}{\text{s}}\right)}{965 \times 10^{-9} \text{ m}}$ $E_{\rm B} = 2.06 \times 10^{-19} \text{ J}$	$\lambda_{\rm B} = 965 \times 10^{-9} \mathrm{m}$	$c = \lambda_{\rm B} \nu_{\rm B}$ 3.00 × 10 ⁸ $\frac{\rm m}{\rm s} = (965 \times 10^{-9} {\rm m}) \times \nu_{\rm B}$ $\nu_{\rm B} = 3.11 \times 10^{14} {\rm Hz}$
Photon B has greater energy.	Photon B has a shorter wavelength; thus, photon B has greater energy.	Photon B has a larger frequency and shorter wavelength; thus, photon B has greater energy.

A red laser emits 630-nm photons at a rate of 1.00 J/s. In 5 seconds, how many photons does the laser emit?

First, consider the information we know: the laser emits 1.00 J of energy per second. From this information we can figure out how much energy, in total, is emitted over a span of 5 seconds.

 $1.00 \frac{J}{s} \times 5.00 s = 5.00 J$ (total energy emitted)

Second, we need to consider that light is composed of photons with equal energy, and that this energy is given by the wavelength. Therefore, we can now determine the energy of a single photon of red laser with wavelength 630 nm.

$$E = \frac{hc}{\lambda} = \frac{\left(6.626 \times 10^{-34} \text{ }\frac{\text{J}}{\text{s}}\right) \left(3.00 \times 10^8 \text{ }\frac{\text{m}}{\text{s}}\right)}{630 \times 10^{-9} \text{ }\text{m}} = 3.15_5 \times 10^{-19} \text{ J (per photon)}$$

Finally, we can determine the number of photons emitted in 5.00 seconds since we know the total amount of energy and the amount of energy per photon of red laser:

$$n_{photons} = (5.00 \text{ J}) \times \left(\frac{1 \text{ photon}}{3.15_5 \times 10^{-19} \text{ J}}\right) = 1.58 \times 10^{19} \text{ photons}$$

Total energy Energy per
emitted in photon
5 seconds

Calculate the frequencies for the following four electron transitions in the hydrogen atom.

For electron transitions in the hydrogen atom, we can apply the Rydberg equation to calculate the wavelength associated with each transition.

 $\frac{1}{\lambda} = \left[1.10 \times 10^7 \frac{1}{m} \right] \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad ; \quad R_H = 1.10 \times 10^7 \frac{1}{m}$

Electron Transitions	Wavelengths	Frequencies	
$n = 5 \rightarrow n = 4$	$\frac{1}{\lambda_{5\to 4}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{4^2} - \frac{1}{5^2}\right) = 247_{500} \frac{1}{m}$ $\lambda_{5\to 4} = 4.04 \times 10^{-6} m$	$c = \lambda_{5 \to 4} \nu_{5 \to 4}$ 3.00 × 10 ⁸ $\frac{m}{s}$ = (4.04 × 10 ⁻⁶ m) × $\nu_{5 \to 4}$	
$n = 4 \rightarrow n = 3$	$\frac{1}{\lambda_{4\to3}} = \left[1.10 \times 10^7 \frac{1}{m} \right] \left(\frac{1}{3^2} - \frac{1}{4^2} \right) = 534_{722} \frac{1}{m}$ $\lambda_{4\to3} = 1.87 \times 10^{-6} \text{ m}$	$\nu_{5 \to 4} = \underline{\overline{C}} \cdot \underline{A3} \times \underline{10^{13}} \text{ Hz}$ $3.00 \times 10^8 \frac{\text{m}}{\text{s}}$ $= (1.87 \times 10^{-6} \text{ m}) \times \nu_{4 \to 3}$ Energy of	
$n = 3 \rightarrow n = 2$	$\frac{1}{\lambda_{3\to 2}} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{2^2} - \frac{1}{3^2}\right) = 152_{7777} \frac{1}{m}$	$v_{4\rightarrow3} = 1.60 \times 10^{14} \text{ Hz}$ $c = \lambda_{3\rightarrow2}v_{3\rightarrow2}$ $3.00 \times 10^8 \frac{\text{m}}{\text{s}}$ (spacing) ge smaller as high transitions occ	et her
$n = 2 \rightarrow n = 1$	$\lambda_{3\to 2} = 6.55 \times 10^{-7} \text{ m}$ $\frac{1}{\lambda_{2\to 1}} = \left[1.10 \times 10^7 \frac{1}{\text{m}}\right] \left(\frac{1}{1^2} - \frac{1}{2^2}\right) = 8250000 \frac{1}{\text{m}}$ $\lambda_{2\to 1} = 1.21 \times 10^{-7} \text{ m}$	= $(6.54_5 \times 10^{-7} \text{ m}) \times \nu_{3 \rightarrow 2}$ $\nu_{3 \rightarrow 2} = 4.58 \times 10^{14} \text{ Hz}$ $c = \lambda_{2 \rightarrow 1} \nu_{2 \rightarrow 1}$ $3.00 \times 10^8 \frac{\text{m}}{\text{s}}$ = $(1.21_2 \times 10^{-7} \text{ m}) \times \nu_{2 \rightarrow 1}$	
	2 /1	$\nu_{2\rightarrow 1} = 2.48 \times 10^{15} \text{ Hz}$ BACK TO TO	<u>)C</u>

Calculate the wavelengths of radiation required for the following four absorptions in the hydrogen atom

We can still apply the Rydberg equation to calculate the wavelengths, but this corresponds to absorptions now, not emissions.

 $\frac{1}{\lambda} = \left[1.10 \times 10^7 \frac{1}{m}\right] \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \quad ; \quad R_H = 1.10 \times 10^7 \frac{1}{m}$

A) $n = 4 \rightarrow n = 3$ B) $n = 1 \rightarrow n = 2$ C) $n = 1 \rightarrow n = 6$ D) $n = 3 \rightarrow n = 2$

This problem should not require any calculations—even though you will get the right answer, it will take you too long to do.

First, eliminate choices B and C since those are both *absorptions*.

Second, you need to understand that the spacing between the states gets smaller and smaller as the value of *n* increases (i.e. higher excited states). So the largest energy spacing will occur for the $n = 2 \rightarrow n = 1$ transition, which results in the shortest wavelength and highest frequency of light.

Every successive emission has smaller ΔE , longer λ , and higher v.

So, the answer is A.

BACK TO TOC

SLIDE 7

What are the possible values of m_l when n = 4?

Remember the general, ordered scheme for assigning/generating quantum numbers:	$n \implies \ell \implies$	$m_{l} \implies m_{s}$
1. Start with <i>n</i> , the principal quantum number	4 0 (s)	0 $\rightarrow 1$ + ¹ / ₂ or - ¹ / ₂
 Then assign ℓ, the angular momentum quantum number. The values of ℓ range from 0 to (n – 1) in integers. The value of ℓ determines the orbital shape (s, p, d, or f). 	1 (p)	$ \begin{array}{c} -1 \\ 0 \\ +1 \end{array} \right\} \begin{array}{c} +\frac{1}{2} \text{ or } -\frac{1}{2} \\ +\frac{1}{2} \text{ or } -\frac{1}{2} \\ +\frac{1}{2} \text{ or } -\frac{1}{2} \end{array} $
3. Next assign m_{ℓ} , which is the magnetic quantum number. m_{ℓ} can take on integer values ranging from $-\ell$ to $+\ell$. The number of possible m_{ℓ} values determines how many orbitals exist.	2 (d)	$\begin{array}{c} -2 \\ -1 \\ 0 \\ +1 \\ +2 \end{array} + \begin{array}{c} +1/_{2} \text{ or } -1/_{2} \\ +1/_{2} \text{ or } -1/_{2} \end{array}$
4. Finally, assign m_s , the spin quantum number. m_s can only take on two values: $+\frac{1}{2}$ and $-\frac{1}{2}$. This tells us that only two electrons can occupy an orbital.	3 (f)	$\begin{array}{c} -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \\ +3 \end{array}$ $\begin{array}{c} +1/_{2} \text{ or } -1/_{2} \\ +1/_{2} \text{ or } -1/_{2} \end{array}$

BACK TO TOC

Which of the following sets of quantum numbers are not allowed?

SLIDE 9

Set I	Set II	Set III	Set IV
<i>n</i> = 1	<i>n</i> = 3	<i>n</i> = 1	n = 2
<i>l</i> = 2	$\ell = 0$	$\ell = 0$	$\ell = 1$
$m_l = 0$	$m_{\ell} = 0$	$m_{l} = 1$	$m_l = 2$
$m_{\rm s} = +1/_2$	$m_{\rm s} = -1/_2$	$m_{\rm s} = -1/_2$	$m_{\rm s} = +\frac{1}{2}$
仓		仓	얍
For <i>n</i> = 1, the only possible value of ℓ is 0.		For <i>n</i> = 1, the only possible value of ℓ is 0. But, for ℓ = 0, the only possible	For <i>n</i> = 2, the possible values of ℓ are 0 and 1. For ℓ = 1, the possible values
Therefore, Set I is not allowed.		value of m_l is 0.	of m_l are -1, 0, +1.
		Therefore, Set III is not allowed.	Therefore, Set IV is not allowed

Remember the general, ordered scheme for assigning/generating quantum numbers:

- 1. Start with *n*, the principal quantum number
- 2. Then assign ℓ , the angular momentum quantum number. The values of ℓ range from 0 to (n - 1) in integers.
- 3. Next assign m_{ℓ} , which is the magnetic quantum number. m_{ℓ} can take on integer values ranging from $-\ell$ to $+\ell$.
- 4. Finally, assign m_s , the spin quantum number. m_s can only take on two values: $+\frac{1}{2}$ and $-\frac{1}{2}$.

Sets	Ordered Sets	Size <u>increases</u> down a column:
Sn, Xe, Rb, Sr	Xe < Sn < Sr < Rb	 Adding electrons to larger and larger energy levels (n). Electrons are farther and farther from the nucleus.
Rn, He, Xe, Kr		Less attraction from the positively charged nucleus.
Pb, Ba, Cs, At		 Size <u>decreases</u> across a row: Adding electrons to the same energy level (<i>n</i>). But also adding more and more protons (positive charge). Electrons are pulled more tightly by the
Ga, N, Cs, P		increased number of protons (i.e. greater positive charge of nucleus).
O²-, F⁻, Na⁺, Mg²+		For the <u>ions</u> , consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

BACK TO TOC

Sets	Ordered Sets	Size <u>increases</u> down a column:
Sn, Xe, Rb, Sr	Xe < Sn < Sr < Rb	 Adding electrons to larger and larger energy levels (n). Electrons are farther and farther from the nucleus.
Rn, He, Xe, Kr	He < Kr < Xe < Rn	 Less attraction from the positively charged nucleus.
Pb, Ba, Cs, At		 Size <u>decreases</u> across a row: Adding electrons to the same energy level (n). But also adding more and more protons (positive charge). Electrons are pulled more tightly by the
Ga, N, Cs, P		increased number of protons (i.e. greater positive charge of nucleus).
O²-, F⁻, Na⁺, Mg²+		For the <u>ions</u> , consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

BACK TO TOC

Sets	Ordered Sets	Size <u>increases</u> down a column:
Sn, Xe, Rb, Sr	Xe < Sn < Sr < Rb	 Adding electrons to larger and larger energy levels (n). Electrons are farther and farther from the nucleus.
Rn, He, Xe, Kr	He < Kr < Xe < Rn	 Less attraction from the positively charged nucleus.
Pb, Ba, Cs, At	At < Pb < Ba < Cs	 Size <u>decreases</u> across a row: Adding electrons to the same energy level (<i>n</i>). But also adding more and more protons (positive charge). Electrons are pulled more tightly by the
Ga, N, Cs, P		increased number of protons (i.e. greater positive charge of nucleus).
O²-, F⁻, Na⁺, Mg²+		For the <u>ions</u> , consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.

Sets	Ordered Sets	Size <u>increases</u> down a column:
Sn, Xe, Rb, Sr	Xe < Sn < Sr < Rb	 Adding electrons to larger and larger energy levels (n). Electrons are farther and farther from the nucleus.
Rn, He, Xe, Kr	He < Kr < Xe < Rn	 Less attraction from the positively charged nucleus.
Pb, Ba, Cs, At	At < Pb < Ba < Cs	 Size <u>decreases</u> across a row: Adding electrons to the same energy level (n). But also adding more and more protons (positive charge). Electrons are pulled more tightly by the
Ga, N, Cs, P	N < P < Ga < Cs	increased number of protons (i.e. greater positive charge of nucleus).
O²-, F⁻, Na⁺, Mg²+		For the <u>ions</u> , consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.
		BACK TO TOC

Sets	Ordered Sets	Size <u>increases</u> down a column:
Sn, Xe, Rb, Sr	Xe < Sn < Sr < Rb	 Adding electrons to larger and larger energy levels (<i>n</i>). Electrons are farther and farther from the nucleus.
Rn, He, Xe, Kr	He < Kr < Xe < Rn	 Less attraction from the positively charged nucleus.
Pb, Ba, Cs, At	At < Pb < Ba < Cs	 Size <u>decreases</u> across a row: Adding electrons to the same energy level (n). But also adding more and more protons (positive charge).
Ga, N, Cs, P	N < P < Ga < Cs	 Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus).
O²−, F⁻, Na⁺, Mg²⁺	Mg²+ < Na⁺ < F⁻ < O²−	For the <u>ions</u> , consider that each ion has 10 electrons, but a different number of protons. As the number of protons increases, the size decreases.
		BACK TO TOO

Sets	Ordered Sets	IE decreases down a column:
B, N, Rb	Rb < B < N	 Adding electrons to larger and larger energy levels (n). Electrons are farther and farther from the
Li, C, Si		 nucleus. Less attraction (more screening) from the positively charged nucleus → easier to remove electron!
Mg, O, P, Na		 IE <u>increases</u> across a row: Adding electrons to the same energy level (<i>n</i>). But also adding more and more protons
Te, Cs, F, Sn, Se		 (positive charge). Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus) → harder to remove electron!

Sets	Ordered Sets	IE <u>decreases</u> down a column:
B, N, Rb	Rb < B < N	 Adding electrons to larger and larger energy levels (n). Electrons are farther and farther from the nucleus.
Li, C, Si	Li < Si < C	 Less attraction (more screening) from the positively charged nucleus → easier to remove electron!
Mg, O, P, Na		 IE <u>increases</u> across a row: Adding electrons to the same energy level (<i>n</i>). But also adding more and more protons (positive charge).
Te, Cs, F, Sn, Se		 Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus) → harder to remove electron!

Sets	Ordered Sets	IE <u>decreases</u> down a column:
B, N, Rb	Rb < B < N	 Adding electrons to larger and larger energy levels (n). Electrons are farther and farther from the nucleus.
Li, C, Si	Li < Si < C	 Less attraction (more screening) from the positively charged nucleus → easier to remove electron!
Mg, O, P, Na	Na < Mg < P < O	 IE <u>increases</u> across a row: Adding electrons to the same energy level (<i>n</i>). But also adding more and more protons (positive charge).
Te, Cs, F, Sn, Se		 Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus) → harder to remove electron!

< B < N	 IE <u>decreases</u> down a column: Adding electrons to larger and larger energy
< B < N	Adding electrons to larger and larger energy
	levels (<i>n</i>).
: Si < C	 Electrons are farther and farther from the nucleus. Less attraction (more screening) from the positively charged nucleus → easier to remove electron!
1g < P < O	IE <u>increases</u> across a row:
< Te < Se < F	 Adding electrons to the same energy level (n). But also adding more and more protons (positive charge). Electrons are pulled more tightly by the increased number of protons (i.e. greater positive charge of nucleus) → harder to remove electron!
	< Si < C ⁄Ig < P < O < Te < Se < F

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	Be ³⁺
S²-, Ca²+, K+, Cl⁻	Largest size?	
K ⁺ , Ca ⁺ , Ar ⁺ , Cl ⁺ , S ⁺	Smallest ionization energy?	
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	
Se²-, Br⁻, Sr²+, Zr⁴+, Rb⁺	Smallest ionization energy?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	Be ³⁺
S²-, Ca²+, K+, Cl⁻	Largest size?	S ^{2–}
K ⁺ , Ca ⁺ , Ar ⁺ , Cl ⁺ , S ⁺	Smallest ionization energy?	
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	
Se²-, Br⁻, Sr²+, Zr⁴+, Rb⁺	Smallest ionization energy?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	Be ³⁺
S ^{2–} , Ca ²⁺ , K ⁺ , Cl [–]	Largest size?	S ^{2–}
K ⁺ , Ca ⁺ , Ar ⁺ , Cl ⁺ , S ⁺	Smallest ionization energy?	Ca ⁺
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	
Se ^{2–} , Br [–] , Sr ²⁺ , Zr ⁴⁺ , Rb ⁺	Smallest ionization energy?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	Be ³⁺
S²−, Ca²+, K+, Cl−	Largest size?	S ^{2–}
K ⁺ , Ca ⁺ , Ar ⁺ , Cl ⁺ , S ⁺	Smallest ionization energy?	Ca⁺
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	Cu ²⁺
Se ^{2–} , Br [–] , Sr ²⁺ , Zr ⁴⁺ , Rb ⁺	Smallest ionization energy?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	Be ³⁺
S²−, Ca²+, K+, Cl−	Largest size?	S ^{2–}
K ⁺ , Ca ⁺ , Ar ⁺ , Cl ⁺ , S ⁺	Smallest ionization energy?	Ca⁺
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	Cu ²⁺
Se ^{2–} , Br [–] , Sr ²⁺ , Zr ⁴⁺ , Rb ⁺	Smallest ionization energy?	Se ^{2–}
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	Be ³⁺
S²-, Ca²+, K+, Cl⁻	Largest size?	S ^{2–}
K ⁺ , Ca ⁺ , Ar ⁺ , Cl ⁺ , S ⁺	Smallest ionization energy?	Ca+
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	Cu ²⁺
Se ^{2–} , Br [–] , Sr ²⁺ , Zr ⁴⁺ , Rb ⁺	Smallest ionization energy?	Se ^{2–}
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	S ²⁺
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	Be ³⁺
S²−, Ca²+, K+, Cl−	Largest size?	S ^{2–}
K ⁺ , Ca ⁺ , Ar ⁺ , Cl ⁺ , S ⁺	Smallest ionization energy?	Ca+
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	Cu ²⁺
Se ^{2–} , Br [–] , Sr ²⁺ , Zr ⁴⁺ , Rb ⁺	Smallest ionization energy?	Se ^{2–}
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	S ²⁺
S ²⁻ , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	S ²⁺

Atom/Ion	Full configuration	Condensed configuration
CI+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴
V		
Mn		
Mn ²⁺		
Ti ²⁺		
Cu		
Cu ²⁺		
Cu+		
Te ^{2–}		

Atom/Ion	Full configuration	Condensed configuration
Cl+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³
Mn		
Mn ²⁺		
Ti ²⁺		
Cu		
Cu ²⁺		
Cu+		
Te ^{2–}		

Atom/Ion	Full configuration	Condensed configuration
Cl+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³
Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	[Ar]4s ² 3d ⁵
Mn ²⁺		
Ti ²⁺		
Cu		
Cu ²⁺		
Cu+		
Te ^{2–}		

BACK TO TOC

Atom/Ion	Full configuration	Condensed configuration	
Cl+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴	
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³	
Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	[Ar]4s ² 3d ⁵	〕
Mn ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	[Ar]3d⁵	Special Notes: 1. Cu is an exception
Ti ²⁺			and fills only half an s orbital.
Cu			2. For transition metal cations,
Cu ²⁺			remove electrons from s orbital first.
Cu⁺			
Te ^{2–}			-

Atom/Ion	Full configuration	Condensed configuration	
CI+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴	
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³	
Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	[Ar]4s ² 3d ⁵]
Mn ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	[Ar]3d ⁵	Special Notes: 1. Cu is an exception
Ti ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²	[Ar]3d ²	and fills only half an s orbital.
Cu			2. For transition metal cations,
Cu ²⁺			remove electrons from s orbital first.
Cu⁺			
Te ^{2–}			-

Atom/Ion	Full configuration	Condensed configuration	
CI+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴	
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³	
Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	[Ar]4s ² 3d ⁵)
Mn ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	[Ar]3d ⁵	Special Notes: 1. Cu is an exception
Ti ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²	[Ar]3d ²	and fills only half an s orbital.
Cu	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	[Ar]4s ¹ 3d ¹⁰	2. For transition metal cations,
Cu ²⁺			remove electrons from s orbital first.
Cu+			
Te ^{2–}			

Atom/Ion	Full configuration	Condensed configuration	
CI+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴	
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³	
Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	[Ar]4s ² 3d ⁵	〕
Mn ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	[Ar]3d ⁵	Special Notes: 1. Cu is an exception
Ti ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²	[Ar]3d ²	and fills only half an s orbital.
Cu	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	[Ar]4s ¹ 3d ¹⁰	2. For transition metal cations,
Cu ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	[Ar]3d ⁹	remove electrons from s orbital first.
Cu⁺			
Te ^{2–}			

Atom/Ion	Full configuration	Condensed configuration	
CI+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴	-
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³	
Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	[Ar]4s ² 3d ⁵	٦
Mn ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	[Ar]3d⁵	Special Notes: 1. Cu is an exception
Ti ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²	[Ar]3d ²	and fills only half an s orbital.
Cu	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	[Ar]4s ¹ 3d ¹⁰	2. For transition metal cations,
Cu ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	[Ar]3d ⁹	remove electrons from s orbital first.
Cu+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰	[Ar]3d ¹⁰	
Te ^{2–}			

Atom/Ion	Full configuration	Condensed configuration	_
Cl+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴	_
V	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	[Ar]4s ² 3d ³	
Mn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	[Ar]4s ² 3d ⁵]
Mn ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	[Ar]3d ⁵	Special Notes: 1. Cu is an exception
Ti ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²	[Ar]3d ²	and fills only half an s orbital.
Cu	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	[Ar]4s ¹ 3d ¹⁰	2. For transition metal cations,
Cu ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	[Ar]3d ⁹	remove electrons from s orbital first.
Cu+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰	[Ar]3d ¹⁰	
Te ^{2–}	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ⁶	[Kr]5s ² 4d ¹⁰ 5p ⁶	

For each of the following atoms or ions, determine the number of unpaired electrons.

	Unpaired electrons	Condensed configuration	Full configuration	Atom/Ion
-	2 unpaired electrons	[Ne]3s ² 3p ⁴	1s²2s²2p ⁶ 3s²3p ⁴	Cl+
	3 unpaired electrons	[Ar]4s ² 3d ³	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³	V
	5 unpaired electrons	[Ar]4s ² 3d ⁵	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	Mn
	5 unpaired electrons	[Ar]3d ⁵	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵	Mn ²⁺
	2 unpaired electrons	[Ar]3d ²	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²	Ti ²⁺
	1 unpaired electrons	[Ar]4s ¹ 3d ¹⁰	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	Cu
	1 unpaired electrons	[Ar]3d ⁹	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹	Cu ²⁺
	0 unpaired electrons	[Ar]3d ¹⁰	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰	Cu⁺
	0 unpaired electrons	[Kr]5s ² 4d ¹⁰ 5p ⁶	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ⁶	Te ^{2–}

For most of these, the orbital diagram is as shown on the right (Mn, 25 electrons). The general principles are to: (1) determine how many electrons the atom/ion has, (2) fill from the lowest-energy orbitals first, and (3) fill across orbital before pairing electrons to maximize unpaired electrons.

Orbital Diagrams

SLIDE 36

CHEMISTRY 161 – Fall 2018

Dr. Huynh

- A. Which structures have an atom that breaks the octet rule?
 - Structure IV → Iodine has 10 electrons
 - Structure V → Nitrogen has 9 electrons
 - Structure VII → Phosphorus has 10 electrons
- B. Which structures have an incorrect formal charge assignment?

C. Which structures could have another reasonable resonance structure that obeys the octet rule?

- D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?
 - Structure III

Structure VI

Structure VII

- A. Which structures have an atom that breaks the octet rule?
 - Structure IV \rightarrow lodine has 10 electrons
 - Structure V → Nitrogen has 9 electrons
 - Structure VII → Phosphorus has 10 electrons
- B. Which structures have an incorrect formal charge assignment?
 - Structure II \rightarrow Carbon should be "0"
 - Structure III \rightarrow Boron should be "+1" and F (in B=F) should be "-1"
- C. Which structures could have another reasonable resonance structure that obeys the octet rule?

- D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?
 - Structure III

Structure VI

Structure VII

- A. Which structures have an atom that breaks the octet rule?
 - Structure IV → Iodine has 10 electrons
 - Structure V → Nitrogen has 9 electrons
 - Structure VII → Phosphorus has 10 electrons
- B. Which structures have an incorrect formal charge assignment?
 - Structure II \rightarrow Carbon should be "0"
 - Structure III \rightarrow Boron should be "+1" and F (in B=F) should be "-1"
- C. Which structures could have another reasonable resonance structure that obeys the octet rule? Structures II and III
- D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?

Structure III

Structure VI

Structure VII

- A. Which structures have an atom that breaks the octet rule?
 - Structure IV \rightarrow lodine has 10 electrons
 - Structure V → Nitrogen has 9 electrons
 - Structure VII → Phosphorus has 10 electrons
- B. Which structures have an incorrect formal charge assignment?
 - Structure II \rightarrow Carbon should be "0"
 - Structure III \rightarrow Boron should be "+1" and F (in B=F) should be "-1"
- C. Which structures could have another reasonable resonance structure that obeys the octet rule? Structures II and III
- D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?

Structure III

Structure VI

Structure VII

VII

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.

- A. Which structures have only one π bond? Structures III and VII
- B. Which structures would be paramagnetic?
- C. Which structures contain an sp-hybridized atom?
- D. Which structures contain an sp²-hybridized atom?

VII

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.

- A. Which structures have only one π bond? Structures III and VII
- B. Which structures would be paramagnetic?
 Structure V → Nitrogen has one unpaired electron (radical)
- C. Which structures contain an sp-hybridized atom?
- D. Which structures contain an sp²-hybridized atom?

VII

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.

- A. Which structures have only one π bond? Structures III and VII
- B. Which structures would be paramagnetic?
 Structure V → Nitrogen has one unpaired electron (radical)
- C. Which structures contain an sp-hybridized atom? Structure II → Both C and N are sp-hybridized

D. Which structures contain an sp²-hybridized atom?

VII

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.

- A. Which structures have only one π bond? Structures III and VII
- B. Which structures would be paramagnetic?
 Structure V → Nitrogen has one unpaired electron (radical)
- C. Which structures contain an sp-hybridized atom? Structure II → Both C and N are sp-hybridized
- D. Which structures contain an sp²-hybridized atom?
 - Structure III \rightarrow B and the F in B=F are sp²-hybridized
 - Structure V \rightarrow All atoms are sp²-hybridized
 - Structure VI \rightarrow The O atom in (P=O) is sp²-hybridized

SLIDE 45 CHEMISTRY 161 – Fall 2018 Dr. Huynh

- Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.
- A. Which structures have only one π bond? Structures III and VII
- B. Which structures would be paramagnetic?
 Structure V → Nitrogen has one unpaired electron (radical)
- C. Which structures contain an sp-hybridized atom? Structure II → Both C and N are sp-hybridized
- D. Which structures contain an sp²-hybridized atom?
 - Structure III \rightarrow B and the F in B=F are sp²-hybridized
 - Structure V \rightarrow All atoms are sp²-hybridized
 - Structure VI \rightarrow The O atom in (P=O) is sp²-hybridized
- E. Which structures have a bond angle that is 180°?
 - Structure II \rightarrow Linear geometry
 - Structure IV → See-saw geometry; one of the F-I-F bond angles is 180°

Consider the molecular ion: [GeCl₃]⁻

A. Draw the Lewis structure including any lone pairs and formal charges.

- B. Give the molecular geometry at the central atom.
 - C. State the hybridization at the central atom.
 - D. Determine if the molecule is polar or nonpolar.

Steric Number at Ge= 4 (3 atoms + 1 lone pair)Molecular Geometry at Ge= Trigonal PyramidHybridization at Ge= sp^3 Polar?= Polar

Consider the molecular ion: [FH₂]⁺

A. Draw the Lewis structure including any lone pairs and formal charges.

- B. Give the molecular geometry at the central atom.
 - C. State the hybridization at the central atom.
 - D. Determine if the molecule is polar or nonpolar.

Steric Number at F=Molecular Geometry at F=Hybridization at F=Polar?=

= 4 (2 atoms + 2 lone pair)

- = Bent (or angular)
- **= sp**³
- = Polar

Consider the molecule: XeF₄

A. Draw the Lewis structure including any lone pairs and formal charges.

- B. Give the molecular geometry at the central atom.
 - C. State the hybridization at the central atom.
 - D. Determine if the molecule is polar or nonpolar.

Steric Number at Xe= 6 (4 atoms + 2 lone pair)Molecular Geometry at Xe= Square PlanarHybridization at Xe= sp^3d^2 Polar?= Nonpolar

- i. Give the molecular geometry at the central atom.
- ii. State the hybridization at the central atom.

- i. Give the molecular geometry at the central atom.
- ii. State the hybridization at the central atom.

A.	Trigonal pyramidal	sp ³
Β.	Tetrahedral	sp ³
C.		
D.		
E.		
F.	N/A	
G.		

- i. Give the molecular geometry at the central atom.
- ii. State the hybridization at the central atom.

Α.	Trigonal pyramidal	sp ³
Β.	Tetrahedral	sp ³
C.	Trigonal planar	sp ²
D.		
E.		
F.	N/A	
G.		

i. Give the molecular geometry at the central atom.

G.

ii. State the hybridization at the central atom.

A.	Trigonal pyramidal	sp ³
Β.	Tetrahedral	sp ³
C.	Trigonal planar	sp ²
D.	Trigonal planar	sp ²
E.		
F.	N/A	

- i. Give the molecular geometry at the central atom.
- ii. State the hybridization at the central atom.

Α.	Trigonal pyramidal	sp ³
Β.	Tetrahedral	sp ³
C.	Trigonal planar	sp ²
D.	Trigonal planar	sp ²
E.	Trigonal planar	sp ²
F.	N/A	

G.

- i. Give the molecular geometry at the central atom.
- ii. State the hybridization at the central atom.

Α.	Trigonal pyramidal	sp ³
Β.	Tetrahedral	sp ³
C.	Trigonal planar	sp ²
D.	Trigonal planar	sp ²
E.	Trigonal planar	sp ²
F.	N/A	sp ²
G.		

- i. Give the molecular geometry at the central atom.
- ii. State the hybridization at the central atom.

Α.	Trigonal pyramidal	sp ³
Β.	Tetrahedral	sp ³
C.	Trigonal planar	sp ²
D.	Trigonal planar	sp ²
E.	Trigonal planar	sp ²
F.	N/A	sp ²
G.	Bent (or angular)	sp ³

A. Using the diagram on the left, fill in the electrons for the molecular orbitals of CN⁻. *You do not need to fill in the electrons for the atomic orbitals.*

B. Determine the bond order for CN^- based on your diagram.

C. Do you expect CN^{-} to be paramagnetic or diamagnetic?

D. Do you expect neutral CN to be paramagnetic or diamagnetic?

E. Do you expect CN^{3–} to be paramagnetic or diamagnetic?

- A. Using the diagram on the left, fill in the electrons for the molecular orbitals of CN⁻. *You do not need to fill in the electrons for the atomic orbitals.*
- B. Determine the bond order for CN^- based on your diagram. BO = $\frac{1}{2}$ [bonding – antibonding] = $\frac{1}{2}$ [8 – 2] = 3 (triple bond)

C. Do you expect CN^- to be paramagnetic or diamagnetic?

D. Do you expect neutral CN to be paramagnetic or diamagnetic?

E. Do you expect CN^{3–} to be paramagnetic or diamagnetic?

- A. Using the diagram on the left, fill in the electrons for the molecular orbitals of CN⁻. *You do not need to fill in the electrons for the atomic orbitals.*
- B. Determine the bond order for CN^- based on your diagram. BO = $\frac{1}{2}$ [bonding – antibonding] = $\frac{1}{2}$ [8 – 2] = 3 (triple bond)

C. Do you expect CN⁻ to be paramagnetic or diamagnetic? Diamagnetic: all electrons paired

D. Do you expect neutral CN to be paramagnetic or diamagnetic?

E. Do you expect CN^{3–} to be paramagnetic or diamagnetic?

- A. Using the diagram on the left, fill in the electrons for the molecular orbitals of CN⁻. *You do not need to fill in the electrons for the atomic orbitals.*
- B. Determine the bond order for CN^- based on your diagram. BO = $\frac{1}{2}$ [bonding – antibonding] = $\frac{1}{2}$ [8 – 2] = 3 (triple bond)

C. Do you expect CN⁻ to be paramagnetic or diamagnetic? Diamagnetic: all electrons paired

- D. Do you expect neutral CN to be paramagnetic or diamagnetic? Paramagnetic: one unpaired electron in σ_{2p} orbital
- E. Do you expect CN^{3–} to be paramagnetic or diamagnetic?

- A. Using the diagram on the left, fill in the electrons for the molecular orbitals of CN⁻. *You do not need to fill in the electrons for the atomic orbitals.*
- B. Determine the bond order for CN^- based on your diagram. BO = $\frac{1}{2}$ [bonding – antibonding] = $\frac{1}{2}$ [8 – 2] = 3 (triple bond)

C. Do you expect CN⁻ to be paramagnetic or diamagnetic? Diamagnetic: all electrons paired

- D. Do you expect neutral CN to be paramagnetic or diamagnetic? Paramagnetic: one unpaired electron in σ_{2p} orbital
- E. Do you expect CN^{3-} to be paramagnetic or diamagnetic? Paramagnetic: two unpaired electrons in two π^*_{2p} orbitals

Set	Property	Ordered Set	
$\begin{array}{c} CH_3CH_2OH,\ CH_3OCH_3,\ CH_3CH_2CH_3\\ (C,D,F) & (D,F) & (F) \end{array}$	Vapor pressure at 298 K	$CH_3CH_2OH < CH_3OCH_3 < CH_3CH_2CH_3$	3
O ₂ , CuCl, Br ₂ , CH ₃ OH	Solubility in water		
BaCl ₂ , H ₂ , CO, Kr, HF	Boiling point	S	rong IMFs lead to:
CH ₃ OH, Cl ₂ , N ₂ , CH ₃ Cl	Melting point	•	Higher boiling points Higher melting points
N ₂ , KBr, O ₂ , HCN	Boiling point	•	Smaller vapor pressure
FeO, NaCl, CF ₄ , CH ₃ OH	Melting point	·	Greater surface tension
CH ₃ OH, CH ₃ CH ₃ , H ₂ CO	Surface Tension		

Below each of the compounds, I have listed the IMFs present for pure solutions of that compound (or with water for solubility). The legend is as follows: lon-lon **Ion-Dipole** Hydrogen Bonding **Dipole-Dipole Dipole-Induced Dipole Dispersion Forces (B)** (A) (D) (F If two compounds both have ion-ion interactions, Can only occur for this specific arrangement: If two compounds both have dipole-dipole If two compounds both have the interactions are stronger for higher charges(q)dispersion, interactions are stronger for and smaller ions (d) via: interactions, interactions are stronger for (A):----H-(B) $E \propto \frac{q_1 q_2}{d}$ larger dipoles (greater EN differences). more massive (heavier) and more A & B = N, O, or Fspread out molecules.

Dr. Huynh

Set	Property	Ordered Set	
$\begin{array}{c} CH_3CH_2OH, \ CH_3OCH_3, \ CH_3CH_2CH_3\\ (C,D,F) & (D,F) & (F) \end{array}$	Vapor pressure at 298 K	$CH_3CH_2OH < CH_3OCH_3 < CH_3CH_2OH_3$	CH ₃
O_2 , CuCl, Br ₂ , CH ₃ OH (E,F) (solid) (E,F) (C,D,F)	Solubility in water	CuCl (<i>s</i>); O ₂ < Br ₂ < CH ₃ OH	
BaCl ₂ , H ₂ , CO, Kr, HF	Boiling point		Strong IMFs lead to:
CH ₃ OH, Cl ₂ , N ₂ , CH ₃ Cl	Melting point		Higher boiling points
N ₂ , KBr, O ₂ , HCN	Boiling point		Higher melting pointsSmaller vapor pressure
FeO, NaCl, CF ₄ , CH ₃ OH	Melting point		Greater surface tension
CH ₃ OH, CH ₃ CH ₃ , H ₂ CO	Surface Tension		
ch of the compounds, I have listed the IMFs pi			

Dr. Huynh

Set	Property	Ordered Set	
$\begin{array}{c} CH_3CH_2OH, \ CH_3OCH_3, \ CH_3CH_2CH_3\\ (\texttt{C},\texttt{D},\texttt{F}) & (\texttt{D},\texttt{F}) & (\texttt{F}) \end{array}$	Vapor pressure at 298 K	$CH_3CH_2OH < CH_3OCH_3 < CH_3CH_2$	CH ₃
O_2 , CuCl, Br ₂ , CH ₃ OH (E,F) (solid) (E,F) (C,D,F)	Solubility in water	CuCl (s); $O_2 < Br_2 < CH_3OH$	
BaCl ₂ , H ₂ , CO, Kr, HF (A) (F) (D,F) (F) (C,D,F)	Boiling point	$H_2 < Kr < CO < HF < BaCl_2$	Strong IMFs lead to:
CH ₃ OH, Cl ₂ , N ₂ , CH ₃ Cl	Melting point		Higher boiling pointsHigher melting points
N ₂ , KBr, O ₂ , HCN	Boiling point		 Smaller vapor pressure Greater surface tensior
FeO, NaCl, CF ₄ , CH ₃ OH	Melting point		
CH ₃ OH, CH ₃ CH ₃ , H ₂ CO	Surface Tension		
ch of the compounds. I have listed the IMEs pr			

Dr. Huynh

Set	Property	Ordered Set	
$\begin{array}{c} CH_3CH_2OH, \ CH_3OCH_3, \ CH_3CH_2CH_3\\ (\mathtt{C},\mathtt{D},\mathtt{F}) & (\mathtt{D},\mathtt{F}) & (\mathtt{F}) \end{array}$	Vapor pressure at 298 K	$CH_3CH_2OH < CH_3OCH_3 < CH_3CH_2OH_3$	CH ₃
O_2 , CuCl, Br ₂ , CH ₃ OH (E,F) (solid) (E,F) (C,D,F)	Solubility in water	CuCl (s); $O_2 < Br_2 < CH_3OH$	
BaCl ₂ , H ₂ , CO, Kr, HF (A) (F) (D,F) (F) (C,D,F)	Boiling point	$H_2 < Kr < CO < HF < BaCl_2$	Strong IMFs lead to:
$\begin{array}{c} CH_3OH,\ CI_2,\ N_2,\ CH_3CI\\ \textbf{(C,D,F)} \textbf{(F)} \textbf{(F)} \textbf{(D,F)} \end{array}$	Melting point	$N_2 < CI_2 < CH_3CI < CH_3OH$	Higher boiling pointsHigher melting points
N ₂ , KBr, O ₂ , HCN	Boiling point		Smaller vapor pressure
			Greater surface tension
FeO, NaCl, CF_4 , CH_3OH	Melting point		
CH ₃ OH, CH ₃ CH ₃ , H ₂ CO	Surface Tension		

Set	Property	Ordered Set	
$\begin{array}{c} CH_3CH_2OH, \ CH_3OCH_3, \ CH_3CH_2CH_3\\ (C,D,F) & (D,F) & (F) \end{array}$	Vapor pressure at 298 K	$CH_3CH_2OH < CH_3OCH_3 < CH_3CH_2OH_3$	CH ₃
O_2 , CuCl, Br ₂ , CH ₃ OH (E,F) (solid) (E,F) (C,D,F)	Solubility in water	CuCl (s); $O_2 < Br_2 < CH_3OH$	
BaCl ₂ , H ₂ , CO, Kr, HF (A) (F) (D,F) (F) (C,D,F)	Boiling point	$H_2 < Kr < CO < HF < BaCl_2$	Strong IMFs lead to:
$\begin{array}{c} CH_3OH,\ CI_2,\ N_2,\ CH_3CI\\ \textbf{(C,D,F)}\textbf{(F)}\textbf{(F)}\textbf{(D,F)} \end{array}$	Melting point	$N_2 < CI_2 < CH_3CI < CH_3OH$	Higher boiling pointsHigher melting points
N ₂ , KBr, O ₂ , HCN (F) (A) (F) (D,F)	Boiling point	$N_2 < O_2 < HCN < KBr$	Smaller vapor pressureGreater surface tension
FeO, NaCl, CF ₄ , CH ₃ OH	Melting point		
CH ₃ OH, CH ₃ CH ₃ , H ₂ CO	Surface Tension		
сн ₃ он, сн ₃ сн ₃ , н ₂ со compounds, I have listed the IMFs pr			

Set	Property	Ordered Set	
$CH_{3}CH_{2}OH, CH_{3}OCH_{3}, CH_{3}CH_{2}CH_{3}$ $(C,D,F) (D,F) (F)$	Vapor pressure at 298 K	$CH_3CH_2OH < CH_3OCH_3 < CH_3CH_2OH_2OH_3$	CH ₃
O_2 , CuCl, Br ₂ , CH ₃ OH (E,F) (solid) (E,F) (C,D,F)	Solubility in water	CuCl (<i>s</i>); O ₂ < Br ₂ < CH ₃ OH	
BaCl ₂ , H ₂ , CO, Kr, HF (A) (F) (D,F) (F) (C,D,F)	Boiling point	$H_2 < Kr < CO < HF < BaCl_2$	Strong IMFs lead to:
$\begin{array}{c} CH_3OH,\ CI_2,\ N_2,\ CH_3CI\\ \textbf{(C,D,F)} \textbf{(F)} \textbf{(F)} \textbf{(D,F)} \end{array}$	Melting point	$N_2 < CI_2 < CH_3CI < CH_3OH$	Higher boiling pointsHigher melting points
N ₂ , KBr, O ₂ , HCN (F) (A) (F) (D,F)	Boiling point	$N_2 < O_2 < HCN < KBr$	Smaller vapor pressureGreater surface tension
FeO, NaCl, CF_4 , CH_3OH (A) (A) (F) (C,D,F)	Melting point	$CF_4 < CH_3OH < NaCl < FeO$	
CH ₃ OH, CH ₃ CH ₃ , H ₂ CO	Surface Tension		

	Ordered Set	perty	Prop	Set	
H ₃	$H_3CH_2OH < CH_3OCH_3 < CH_3CH_2CH_3CH_2CH_3CH_2CH_3CH_2CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$	sure at 298 K	CH ₃ Vapor press	$H_2OH, CH_3OCH_3, CH_3CH_2$ D,F) (D,F) (F)	CH ₃ CH ₂ ((C,D,F)
	CuCl (<i>s</i>); O ₂ < Br ₂ < CH ₃ OH	y in water	Solubility	O_2 , CuCl, Br ₂ , CH ₃ OH (E,F) (solid) (E,F) (C,D,F)	
Strong IMFs lead to:	$H_2 < Kr < CO < HF < BaCl_2$	g point	Boilin	$\begin{array}{c} BaCl_2,\ H_2,\ CO,\ Kr,\ HF\\ \textbf{(A)} \textbf{(F)} \textbf{(D,F)} \textbf{(F)} \textbf{(C,D,F)} \end{array}$	
Higher boiling pointsHigher melting points	$N_2 < CI_2 < CH_3CI < CH_3OH$	g point	Meltin	$\begin{array}{c} CH_3OH,\ CI_2,\ N_2,\ CH_3CI\\ (C,D,F) (F) (F) (D,F) \end{array}$	
Smaller vapor pressureGreater surface tension	$N_2 < O_2 < HCN < KBr$	g point	Boiling	N ₂ , KBr, O ₂ , HCN (F) (A) (F) (D,F)	
	$CF_4 < CH_3OH < NaCl < FeO$	g point	Meltin	FeO, NaCl, CF_4 , CH_3OH (A) (A) (F) (C,D,F)	
	$CH_3CH_3 < H_2CO < CH_3OH$	Tension	Surface	$\begin{array}{c} CH_3OH, \ CH_3CH_3, \ H_2CO\\ (C,D,F) & (F) & (D,F) \end{array}$	
end is as follows:	ound (or with water for solubility). The leg	olutions of that cor	MFs present for pure sc	compounds, I have listed the	each of the co
spersion Forces	Dipole-Induced Dipole Di	Dipole-Dip	Hydrogen Bonding	lon-Dipole	on-lon

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)	Lewis Structure (<mark>Dipole drawn if polar</mark>)
NH ₃	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	<u>,</u> 1 н∕ [№] ‴́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́
CCI4				
C ₆ H₅OH				
CH ₃ CH ₂ OCH ₂ CH ₃				
Kr				
CO ₂				
(CH ₃) ₂ NH				

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)	Lewis Structure (Dipole drawn if polar
NH ₃	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	,
CCI4	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar CI
C ₆ H₅OH				CI
H ₃ CH ₂ OCH ₂ CH ₃				
Kr				
CO ₂				

 $(CH_3)_2NH$

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)	Lewis Structure (Dipole drawn if polar)
NH ₃	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	↓ ⊢ ^Ň ,‴H
CCI4	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar CI
C ₆ H₅OH	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	
CH ₃ CH ₂ OCH ₂ CH ₃				

 $(CH_3)_2NH$

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)	Lewis Structure (<mark>Dipole drawn if polar</mark>)
NH ₃	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	, Н∕ ^N , Н
CCI ₄	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar CI CI CI
C ₆ H₅OH	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	С С Н
CH ₃ CH ₂ OCH ₂ CH ₃	Dipole-Dipole	Hydrogen Bonding	Dipole-Induced Dipole	H_2 H_2 C C
Kr				♥ H ₃ C [*] .O. [*] CH ₃
CO ₂				

(CH₃)₂NH

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)	Lewis Structure (<mark>Dipole drawn if polar</mark>)
NH ₃	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	<u>↓</u> н∕ [№] ‴́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́
CCI4	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar CI
C ₆ H₅OH	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	
CH ₃ CH ₂ OCH ₂ CH ₃	Dipole-Dipole	Hydrogen Bonding	Dipole-Induced Dipole	
Kr	Dispersion	Dipole-Induced Dipole	Dispersion	Kr nonpolar

 $(CH_3)_2NH$

BACK TO TOC

For each of the following molecules, determine the main intermolecular interactions:

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)	Lewis Structure (<mark>Dipole drawn if polar</mark>)
NH ₃	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	,
CCI4	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar CI CI CI
C ₆ H₅OH	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	С, С, Н
CH ₃ CH ₂ OCH ₂ CH ₃	Dipole-Dipole	Hydrogen Bonding	Dipole-Induced Dipole	H_2 H_2 C C
Kr	Dispersion	Dipole-Induced Dipole	Dispersion	♥ H₃C [°] .O [°] . [°] CH₃ Kr nonpolar
CO ₂	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar

 $(CH_3)_2NH$

BACK TO TOC

For each of the following molecules, determine the main intermolecular interactions:

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)	Lewis Structure (<mark>Dipole drawn if polar</mark>)
NH ₃	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	↓ н ∕ ^Ň , ""Н
CCI4	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar CI
C ₆ H₅OH	Hydrogen Bonding	Hydrogen Bonding	Dipole-Induced Dipole	CI CI
CH ₃ CH ₂ OCH ₂ CH ₃	Dipole-Dipole	Hydrogen Bonding	Dipole-Induced Dipole	$H_2 H_2$
Kr	Dispersion	Dipole-Induced Dipole	Dispersion	H ₃ C CH ₃ CH ₃ Kr nonpolar
CO ₂	Dispersion	Dipole-Induced Dipole	Dispersion	nonpolar
(CH ₃) ₂ NH	Dipole-Dipole	Dipole-Dipole	Dipole-Induced Dipole	, , , , , , , , , , , , , , , , , , ,

- A. At each triple point, determine which phases would exist in equilibrium.
 - (a): Sulfur-I, Sulfur-II, Gas(b): Sulfur-II, Gas, Liquid(c): Sulfur-I, Sulfur-II, Liquid
- B. At which triple point will solid Sulfur-II float on top of liquid sulfur?
- C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense?
- D. Can either of the two solid states sublime at atmospheric pressure? Which?

- A. At each triple point, determine which phases would exist in equilibrium.
 - (a): Sulfur-I, Sulfur-II, Gas (b): Sulfur-II, Gas, Liquid
 - (c): Sulfur-I, Sulfur-II, Liquid
- B. At which triple point will solid Sulfur-II float on top of liquid sulfur?
 None
- C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense?
- D. Can either of the two solid states sublime at atmospheric pressure? Which?

- A. At each triple point, determine which phases would exist in equilibrium.
 - (a): Sulfur-I, Sulfur-II, Gas (b): Sulfur-II, Gas, Liquid
 - (c): Sulfur-I, Sulfur-II, Liquid
- B. At which triple point will solid Sulfur-II float on top of liquid sulfur?
 None
- C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense? Sulfur-II
- D. Can either of the two solid states sublime at atmospheric pressure? Which?

- A. At each triple point, determine which phases would exist in equilibrium.
 - (a): Sulfur-I, Sulfur-II, Gas (b): Sulfur-II, Gas, Liquid
 - (c): Sulfur-I, Sulfur-II, Liquid
- B. At which triple point will solid Sulfur-II float on top of liquid sulfur?
 None
- C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense? Sulfur-II
- D. Can either of the two solid states sublime at atmospheric pressure? Which?
 No, Sulfur-II can sublime at <0.0005 atm.
 Sulfur-I sublimes at <0.0001 atm.