EXAM 3 Review Problems

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2018

www.mioy.org/chem161

Energy & Wa	aves
-------------	------

Photon A has a frequency of 2.45 GHz.Photon B has a wavelength of 965 nm.Which photon has greater energy?

A red laser emits 630-nm photons at a rate of 1.00 J/s. In 5 seconds, how many photons does the laser emit?

Dr. Huynh

Calculate the frequencies for the following four electron transitions in the hydrogen atom.

Electron Transitions
$n = 5 \rightarrow n = 4$
$n = 4 \rightarrow n = 3$
$n = 3 \rightarrow n = 2$
$n = 2 \rightarrow n = 1$

Calculate the wavelengths of radiation required for the following four absorptions in the hydrogen atom

 Absorptions
$n = 1 \rightarrow n = 2$
$n = 1 \rightarrow n = 3$
$n = 1 \rightarrow n = 4$
$n = 2 \rightarrow n = 3$

Which of the following electron transitions in the hydrogen atom results in the emission of light with the longest wavelength?

A)
$$n = 4 \rightarrow n = 3$$
 B) $n = 1 \rightarrow n = 2$ C) $n = 1 \rightarrow n = 6$ D) $n = 3 \rightarrow n = 2$

What are the possible values of m_{ℓ} when n = 4?

Which of the following sets of quantum numbers are not allowed?

Set I	Set II	Set III	Set IV
<i>n</i> = 1	<i>n</i> = 3	<i>n</i> = 1	<i>n</i> = 2
l = 2	$\ell = 0$	$\ell = 0$	$\ell = 1$
$m_l = 0$	$m_\ell = 0$	$m_{\ell} = 1$	$m_l = 2$
$m_{\rm s} = +\frac{1}{2}$	$m_{\rm s} = -\frac{1}{2}$	$m_{\rm s} = -\frac{1}{2}$	$m_{\rm s} = +\frac{1}{2}$

Arrange the following sets of atoms in order of increasing atomic size.

Sets

Sn, Xe, Rb, Sr

Rn, He, Xe, Kr

Pb, Ba, Cs, At

Ga, N, Cs, P

O²⁻, F⁻, Na⁺, Mg²⁺

Arrange the following sets of atoms in order of increasing ionization energy.

Sets
B, N, Rb
Li, C, Si
Ma O P Na
Mg, O, I , Na
Te, Cs, F, Sn, Se

For each of the following sets of atoms and/or ions, determine which has the _____?

Set	Property	Answer
H, He ⁺ , Li ²⁺ , Be ³⁺	Highest ionization energy?	
S²−, Ca²+, K+, Cl⁻	Largest size?	
K⁺, Ca⁺, Ar⁺, Cl⁺, S⁺	Smallest ionization energy?	
V, Mn ²⁺ , Ti ²⁺ , Cu ²⁺	Smallest size?	
Se ^{2–} , Br [–] , Sr ²⁺ , Zr ⁴⁺ , Rb ⁺	Smallest ionization energy?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Smallest size?	
S ^{2–} , S, S ²⁺ , Cs ⁺ , Sr ²⁺	Largest ionization energy?	

For each of the following atoms or ions, give the electronic configuration.

Atom/Ion	Full configuration	Condensed configuration
Cl+		
V		
Mn		
Mn ²⁺		
Ti ²⁺		
Cu		
Cu ²⁺		
Cu⁺		
Te ^{2–}		

For each of the following atoms or ions, determine the number of unpaired electrons.

Atom/Ion
CI+
V
Mn
Mn ²⁺
Ti ²⁺
Cu
Cu ²⁺
Cu⁺
Te ^{2–}

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.

A. Which structures have an atom that breaks the octet rule?

B. Which structures have an incorrect formal charge assignment?

C. Which structures could have another reasonable resonance structure that obeys the octet rule?

D. Given that the electronegativities of H and B are equal, which structure has the most polar bond?

Structure III

Structure VI

Structure VII

Valence Bond Theory

SLIDE 15 CHEMISTRY 161 – Fall 2018 Dr. Huynh

Consider the following seven Lewis structure to the left. Assume that the total number of electrons in each structure is correct.

A. Which structures have only <u>one</u> π bond?

B. Which structures would be paramagnetic?

C. Which structures contain an sp-hybridized atom?

D. Which structures contain an sp²-hybridized atom?

E. Which structures have a bond angle that is 180°?

Consider the molecular ion: [GeCl₃]⁻

A. Draw the Lewis structure including any lone pairs and formal charges.

- B. Give the molecular geometry at the central atom.
 - C. State the hybridization at the central atom.
 - D. Determine if the molecule is polar or nonpolar.

Consider the molecular ion: [FH₂]⁺

A. Draw the Lewis structure including any lone pairs and formal charges.

- B. Give the molecular geometry at the central atom.
 - C. State the hybridization at the central atom.
 - D. Determine if the molecule is polar or nonpolar.

Consider the molecule: XeF₄

A. Draw the Lewis structure including any lone pairs and formal charges.

- B. Give the molecular geometry at the central atom.
 - C. State the hybridization at the central atom.
 - D. Determine if the molecule is polar or nonpolar.

Consider the molecule Tamiflu, shown below. For each of the circled atoms (labeled A–F), do the following:

- i. Give the molecular geometry at the central atom.
- ii. State the hybridization at the central atom.

Consider the cyanate ion, CN⁻, and its molecular orbital diagram shown to the left.

A. Using the diagram on the left, fill in the electrons for the molecular orbitals of CN⁻. *You do not need to fill in the electrons for the atomic orbitals.*

B. Determine the bond order for CN^- based on your diagram.

C. Do you expect CN^{-} to be paramagnetic or diamagnetic?

D. Do you expect neutral CN to be paramagnetic or diamagnetic?

E. Do you expect CN^{3–} to be paramagnetic or diamagnetic?

Arrange the following sets of compounds in order of increasing _____

Set	Property	Ordered Set
CH ₃ CH ₂ OH, CH ₃ OCH ₃ , CH ₃ CH ₂ CH ₃	Vapor pressure at 298 K	
O ₂ , CuCl, Br ₂ , CH ₃ OH	Solubility in water	
BaCl ₂ , H ₂ , CO, Kr, HF	Boiling point	
CH ₃ OH, Cl ₂ , N ₂ , CH ₃ Cl	Melting point	
N ₂ , KBr, O ₂ , HCN	Boiling point	
FeO, NaCl, CF ₄ , CH ₃ OH	Melting point	
CH ₃ OH, CH ₃ CH ₃ , H ₂ CO	Surface Tension	

For each of the following molecules, determine the main intermolecular interactions:

Molecule	Intermolecular interactions with itself	Intermolecular interactions with water (H₂O)	Intermolecular interactions with methane (CH₄)
NH ₃			
CCI ₄			
C ₆ H₅OH			
CH ₃ CH ₂ OCH ₂ CH ₃			
Kr			
CO ₂			
(CH₃)₂NH			

Consider the phase diagram for sulfur (S_8), which has three triple points.

- A. At each triple point, determine which phases would exist in equilibrium.
 - (a): (b): (c):
- B. At which triple point will solid Sulfur-II float on top of liquid sulfur?
- C. Which of the two solid phases, Sulfur-I or Sulfur-II, is less dense?
- D. Can either of the two solid states sublime at atmospheric pressure? Which?