Consider the unbalanced reaction:

$$
\mathrm{Mg}(s)+\mathrm{CO}_{2}(s) \rightarrow \mathrm{MgO}(s)+\mathrm{C}(s)
$$

If 15.0 g of Mg reacts with 25.0 g of CO_{2}, what mass of MgO can be produced?

First, balance the chemical equation:

$$
2 \mathrm{Mg}(s)+\mathrm{CO}_{2}(s) \rightarrow 2 \mathrm{MgO}(s)+\mathrm{C}(s)
$$

Second, determine the limiting reactant:

Method 1	Method 2
$\begin{gathered} 15.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}=0.617 \mathrm{~mol} \mathrm{Mg} \\ 25.0 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}=0.568 \mathrm{~mol} \mathrm{Co}_{2} \end{gathered}$	$\begin{aligned} & 15.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{2 \mathrm{~mol} \mathrm{MgO}}{2 \mathrm{~mol} \mathrm{Mg}}=0.617 \mathrm{~mol} \mathrm{MgO} \\ & 25.0 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{MgO}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=1.14 \mathrm{~mol} \mathrm{MgO} \end{aligned}$
Method 3 $15.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{Mg}}=0.309 \mathrm{~mol} \mathrm{CO}_{2}$	

> | Method 1: Expected $\mathrm{Mg}: \mathrm{CO}_{2}=2: 1$, but have $1.09: 1$ | |
| :--- | :--- |
| Method 2: 15.0 g Mg makes less products than $25.0 \mathrm{~g} \mathrm{CO}_{2}$ | \therefore Mg limiting reactant |
| Method 3: Have more CO_{2} than we need | |

Finally, determine the theoretical yield of MgO from the limiting reactant:

$$
15.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{2 \mathrm{~mol} \mathrm{MgO}}{2 \mathrm{~mol} \mathrm{Mg}} \times \frac{40.31 \mathrm{~g} \mathrm{MgO}}{1 \mathrm{~mol} \mathrm{MgO}}=24.9 \mathrm{~g} \mathrm{MgO}
$$

