Exercise 03

Name:

Key

Consider the combustion of methane in air:

$$\operatorname{CH}_4(g) + 2\operatorname{O}_2(g) \to \operatorname{CO}_2(g) + 2\operatorname{H}_2\operatorname{O}(g)$$

(a) Determine the $\Delta H_{\rm rxn}$ using the values of $\Delta H_{\rm f}^{\rm o}$ given.

Species	ΔH ^o _f (kJ/mol)
$CH_4(g)$	-74.6
$\mathrm{H}_{2}\mathrm{O}\left(g ight)$	-241.8
$\mathrm{CO}_{2}\left(g ight)$	-393.5

- (b) If 1.00×10^6 J of heat were released during a combustion of methane, how many moles of CO₂ gas were produced?
- (a) We can determine the heat of the reaction (or heat of combustion) through the following expression. Recall that $\Delta H_{\rm f}^{\rm o} = 0$ kJ/mol for elements in their elemental states (e.g., O₂ gas).

$$\Delta H_{\rm rxn} = n_{\rm CO_2} \Delta H_{\rm f,CO_2}^{\rm o} + n_{\rm O_2} \Delta H_{\rm f,O_2}^{\rm o} - n_{\rm CH_4} \Delta H_{\rm f,CH_4}^{\rm o} - n_{\rm O_2} \Delta H_{\rm f,O_2}^{\rm o}$$

= (1 mol CO₂) $\left(-393.5 \frac{\rm kJ}{\rm mol}\right)$ + (2 mol H₂O) $\left(-241.8 \frac{\rm kJ}{\rm mol}\right)$ - (1 mol CH₄) $\left(-74.6 \frac{\rm kJ}{\rm mol}\right)$ - $\left(0 \frac{\rm kJ}{\rm mol}\right)$
 $\Delta H_{\rm rxn} = -802.5 \,\rm kJ/mol$

(b) The heat of reaction/combustion (ΔH_{rxn}) tells us that for every 1 mol CH₄ (*g*) combusted, 802.5 kJ of heat are released. From stoichiometry, we also know that 1 mol of CH₄ (*g*) produces 1 mol CO₂ (*g*). So, if we released 1.00 × 10⁶ J:

$$1.00 \times 10^6 \text{ J} \times \frac{1 \text{ kJ}}{1000 \text{ J}} \times \frac{1 \text{ mol } \text{CH}_4}{802.5 \text{ kJ}} \times \frac{1 \text{ mol } \text{CO}_2}{1 \text{ mol } \text{CH}_4} = 1.25 \text{ mol } \text{CO}_2$$