01 FE(III)-OXALATE COMPLEX

SYNTHESIS AND PURIFICATION

CHEMISTRY 136L // FALL 2019

BRIEF OVERVIEW OF PROCEDURE

Synthesis from two aqueous solutions

FeCl₃ (aq, YELLOW)

CHEMISTRY 136L

Oxalate is an anionic bidentate ligand

Brønsted-Lowry acid Lewis acid

CHEMISTRY 136L

It is a Lewis base

Recall	
\rightarrow	proton (H ⁺) donor
\rightarrow	electron (e ⁻) acceptor

BRIEF OVERVIEW OF PROCEDURE

Recrystallization from water

FeCl₃ (aq, YELLOW)

CHEMISTRY 136L

PERCENT YIELD

How much product did you make?

To figure out the expected yield:

Figure out number of moles of each reactant

Use stoichiometry to determine limiting reactant

Use the limiting reactant and stoichiometry to determine expected amount of product

CHEMISTRY 136L

Percent Yield = $\frac{\text{Actual Yield}}{\text{Expected Yield}} \times 100$

Notes

- Work independently
- Recrystallization is challenging, so have patience
- Clean up solid spills (pan + brush)
- Clean up station before you leave
- Check with me before leaving lab

CHEMISTRY 136L

