EXPERIMENT ORIENTATION AND LAB SAFETY

ELEMENTS AND THE PERIODIC TABLE THE BR OSCILLATING REACTION BASIC MEASUREMENTS

CHEMISTRY 134L // SPRING 2020

Course Information, Canvas, and Syllabus

OFFICE	SCL 155
OFFICE HOURS	by appointment
E-MAIL	mioy.huynh@yale.edu

<u>GRADING</u>	6 Quizzes	25 points/quiz	(1 dropped)	125 points
	9 Lab Notebook Sheets			100 points
	6 Lab Reports	50 points/report	(1 dropped)	250 points
	Lab Conduct	5 points/experiment		*25 points

500 points

- Sharper understanding of chemistry
- Appreciation of chemistry and science
- Excellent laboratory skills
- Critical thinking and quantitative reasoning

Laboratory Safety

- 1. Always wear safety glasses in the lab
- Wear: full-length pants, full-sleeve shirt, closed-toe shoes, and a lab coat (no ripped/torn clothing; pants and socks should cover entirety of legs)
- 3. Discard chemical waste in labeled waster containers
- 4. Discard broken glass in broken glass containers
- 5. Do not bring into lab: food, drinks, phone, or laptop
- 6. Do not sit/kneel on floor or benchtops
- 7. Wear and remove gloves when appropriate
- 8. Wash your hands before you leave the lab

Laboratory Safety

		Undergraduate Lab Safety		
		Personal Protective Equipment	Emergencies	
1.	Always	APPOPRIATE LAB CLOTHING Always-Long pants/closed toe shoes. Safety or prescription glasses.		
2.	Wear: fı	Never-Shorts, skirts or sandals. When work involves hazardous materials:		
	and a lał	 Safety glasses Lab coat Chemically-resistant gloves 	KNOW LOCATIONS OF NEAREST: • Exits from room and building • Safety shower	
	should co	Remember: • Tie back/up long hair • Remove lab coats and other PPE	Emergency eyewash Spill response supplies Phone	
3.	Discard	when leaving the lab. • Contact lenses not recommended.	Fire alarm pull station EMERGENCY CONTACTS Medical Fire Police:	
4.	Discard		911 or 203-432-4400 EHS Emergency Line:	
5.	Do not ł		Yale Health Acute Care: 203-432-0123 EHS Main Line:	
6.	Do not s		203-785-3550	
7.	Wear ar			
8.	Wash yc			

YALE Environmental Health & Safety

d-toe shoes,

nd socks

tainers

rs

aptop

Quantitative Measurements

BASICmass, length, time, temperature,QUANTITIESmole, current, luminous intensity

volume, density, molar mass, **DERIVED** speed, energy, concentration **QUANTITIES**

ACCURACY

Closeness to the true value (agreement between determined and actual value)

An exercise in accuracy and precision

Measuring Devices

ANALOG Tools in which the value of a quantity is represented by a **DEVICES** continuously variable physical quantity.

Example 1: Temperature represented by the length of thin column of liquid.

Example 2: Volume of liquid represented by the change in distance a meniscus moves

Read analog devices to "one more" decimal place.

DIGITAL Tools in which the value of a quantity is measured in **DEVICES** terms of another physical quantity but displayed digitally by electronics.

How do we deal with accuracy & precision?

SIGNIFICANT FIGURES = all certain digits + one uncertain digit

How do we deal with arithmetic operations?

ADDITION & SUBTRACTION // draw a vertical line at less precise number

MULTIPLICATION & DIVISION // smallest number of significant figures

1.230.450
$$7.2 \times 10^{-3}$$
 g 6.022×10^{23} $\times 740$ $\div 0.063$ $\div 3$ mL $\times 0.100$ 3 sf2 sf1 sf3 sf

Sample Calculation

A metal rod of length 29.83 cm and diameter 1.25 inches has a mass of 451 g. Can the rod be made of Mg?

Radius =
$$1.25 \text{ in } \times \frac{2.54 \text{ cm}}{1 \text{ in}} \times \frac{1}{2} = 1.58_8 \text{ cm}$$

Volume = $29.83 \text{ cm} \times [\pi \times (1.58_8 \text{ cm})^2] = 2.36_3 \times 10^2 \text{ cm}^3$

Density =
$$\frac{451 \text{ g}}{2.36_3 \times 10^2 \text{ cm}^3}$$
 = 1.91 g · cm⁻³ {3 sig. figs. }
Literature Value = 1.74 g · cm⁻³

Q: How do we minimize "round-off error" in multi-step calculations? A: In intermediate calculations, write down an extra subscripted digit.

Ex. 1 – The Basics

Mass Spectrometry: How does it work?

Mass Spectrometry: How does it work?

NIST Chemistry WebBook (https://webbook.nist.gov/chemistry)

Isotopes & Isotopic Abundances

1 amu = 1/12 mass of 1 ¹²C atom *exactly* (definition)

Fractional abundance of ¹²C is 0.9893

Mass of 1 ¹³C atom = 13.0035 amu

Fractional abundance of ¹³C is (1 – 0.9893) = 0.0107

Average atomic mass of C = 12.0107 amu

Notes

- 1. Lab safety & requirements; lab coat + safety glasses
- 2. Manual + lab notebook + calculator + pen
- 3. Pre-lab material in lab notebook:
 - Identification information
 - Purpose(s) in present or future tense
 - Assigned problem
- 4. In-lab material in lab notebook:
 - Brief procedure in past tense
 - Then your observations and/or measurements
 - Always report measurements to correct sig. figs.
- 5. Lab notebook sheets (include TA name)
- 6. Prepare well for next week's experiment

Chloromethane

Bromomethane

