(1)3 GIEMICAL KINETICS

CONCENTRATION DEPENDENCE\& REACTION ORDER

CHEMISTRY-136L//FALL 2019

REACTIONS OF INTEREST

Decolorization of crystal violet

PURPOSE

Reaction rates

We can express the reaction rate as
Rate $=-\frac{d[\mathrm{CV}]}{d t}=\frac{d\left[\mathrm{OH}^{-}\right]}{d t}=+\frac{d[\text { product }]}{d t}$

Purposes:

Study concentration dependence and rate order
Determine value of rate constant (k)

REACTION ORDER

What is it?

$$
\text { Rate }=-\frac{d[\mathrm{CV}]}{d t}=k[\mathrm{CV}]^{a}\left[\mathrm{OH}^{-}\right]^{b}
$$

where [] is the concentration ($\mathrm{mol} \cdot \mathrm{L}^{-1}$), a is the order with respect to [CV], and b is the order with respect to $\left[\mathrm{OH}^{-}\right]$.

Determining the orders:

1. Initial rate method
2. Integrated equation method
3. Half-life method

$\mathrm{CV} / \mathrm{OH}^{-}$Reaction

METHOD OF FLOODING

Isolating effects of concentrations

$$
\text { Rate }=-\frac{d[\mathrm{CV}]}{d t}=k[\mathrm{CV}]^{1}\left[\mathrm{OH}^{-}\right]^{1}
$$

$$
\text { Make }\left[\mathrm{OH}^{-}\right]_{0} \gg[\mathrm{CV}]_{0}
$$

Today:

$[\mathrm{CV}]_{0} \approx 3 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]_{0} \approx 0.05 \rightarrow 0.2 \mathrm{M}$

Therefore:

$$
\begin{gathered}
\text { Rate }=-\frac{d[\mathrm{CV}]}{d t} \approx k^{\prime}[\mathrm{CV}]^{1} \\
k^{\prime}=k\left[\mathrm{OH}^{-}\right]_{0}
\end{gathered}
$$

$\mathrm{CV} / \mathrm{OH}^{-}$Reaction

INTEGRATED EQUATION METHOD

Extracting rate orders

$$
\text { Rate }=-\frac{d[\mathrm{CV}]}{d t} \approx k^{\prime}[\mathrm{CV}]^{1}
$$

Integrating the above differential rate equation gives:

$$
\begin{aligned}
\ln [\mathrm{CV}]_{t} & =\ln [\mathrm{CV}]_{0}-k^{\prime} t \\
\ln A_{t} & =\ln A_{0}-k^{\prime} t \\
y & =b+m x
\end{aligned}
$$

Logic:

If a plot of $\ln A$ vs. t is linear,
then order with respect to [CV] is $\underline{1}$ and the slope is $-k^{\prime}$.

ORDER WITH RESPECT TO [OH-]。
 Overview of procedure

Determine k^{\prime} for various $\left[\mathrm{OH}^{-}\right]_{0}$
\downarrow
If a plot of k^{\prime} vs. $\left[\mathrm{OH}^{-}\right]_{0}$ is linear, then order with respect to $\left[\mathrm{OH}^{-}\right]$is $\underline{1}$ and the slope is k.

