EXPERIMENT 4 CHEMICAL KINETICS Concentration Dependence & Reactant Order

> DR. MIOY T. HUYNH CHEMISTRY 136L YALE UNIVERSITY FALL 2018

The reaction rate can be expressed as

Rate =
$$-\frac{d[CV]}{dt} = -\frac{d[OH^-]}{dt} = -\frac{d[product]}{dt}$$

<u>PURPOSE</u> Concentration dependence and order Determination of rate constant value

REACTION ORDER: WHAT IS IT?

Rate =
$$-\frac{d[CV]}{dt} = k[CV]^1[OH^-]^1$$

Determining the rate order:

- 1. Initial rate method
- 2. Integrated equation method
- 3. Half-life method

METHOD OF FLOODING

Rate =
$$-\frac{d[CV]}{dt} = k[CV]^1[OH^-]^1$$

Make
$$[OH^{-}]_{0} >> [CV]_{0}$$

 $[CV]_{0} = 3 \times 10^{-5} M$
 $[OH^{-}]_{0} = 0.2 \text{ to } 0.05 M$
Rate $= -\frac{d[CV]}{dt} \approx k'[CV]^{1}$
 $k' = k[OH^{-}]_{0}$

INTEGRATION GIVES					
n[CV] _t	=	In[CV] ₀	-	k'	t
In A _t	=	In A ₀	6	k'	t
V	=	b	+	m	Х

If a plot of ln (Absorbance) vs. time is <u>linear</u>, order with respects to [CV] is 1 and the slope = -k'

Determine order with respects to $[OH^-]_0$ Determine k' for various $[OH^-]_0$

If a plot of k' versus $[OH^-]_0$ is linear, then order with respects to $[OH^-]$ is 1 and slope = k

VERNIER SPECTROMETER