© 4 CHIEMICAL KINETICS

EFFECTS OF TEMPERATURE \& CATAIYSTS

CHEMISTRY $136 \mathrm{~L} / \mathrm{FFAL} \mathrm{L} 2019$

REACTION OF INTEREST

$$
2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

How is the rate of change of each reactant and each product related to each other?

$$
\text { Rate }=+\frac{\Delta\left[\mathrm{I}_{2}\right]}{\Delta t}=+\frac{1}{2} \frac{\Delta\left[\mathrm{SO}_{4}^{2-}\right]}{\Delta t}=-\frac{1}{2} \frac{\Delta\left[\mathrm{I}^{-}\right]}{\Delta t}=-\frac{\Delta\left[\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right]}{\Delta t}
$$

THE RATE LAW

The reaction is first order with respect to both reactants: I^{-}and $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$.

$$
\text { Rate }=k\left[\mathrm{I}^{-}\right]^{1}\left[\mathrm{~S}_{2} \mathrm{O}_{8}^{2-}\right]^{1}
$$

which means the rate constant (k) is

$$
k=\frac{\text { Rate }}{\left[\mathrm{I}^{-}\right]\left[\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right]}
$$

If the initial rate of the reaction can be measured/determine experimentally, then the value of k can be calculated as

$$
k=\frac{\text { Initial Rate }}{\left[\mathrm{I}^{-}\right]_{0}\left[\mathrm{~S}_{2} \mathrm{O}_{8}^{2-}\right]_{0}}
$$

PURPOSES OF EXPERIMENT

Reaction rates

Kinetic energy, E

1. Temperature dependence
2. Activation energy
3. Effect of catalyst (Cu^{2+})

Axiom

Reaction rate double for a $10^{\circ} \mathrm{C}$ rise.

THE ARRHENIUS EQUATION

$$
k=A e^{-\frac{E_{\mathrm{a}}}{R T}} \quad \ln k=\ln A-\frac{E_{\mathrm{a}}}{R T}
$$

Plot In k vs. 1/T

How does a catalyst increase the speed of a reaction?

1. It is not consumed in the reaction.
2. It lowers the activation energy $\left(E_{\mathrm{a}}\right)$.
3. It catalyzes in both directions.
4. It speeds up attainment of equilibrium.

Energy Diagram

GENERAL PROCEDURE

How do we measure the speed of our reaction? What is the role of the thiosulfate ion?

$$
\begin{aligned}
& 2 \mathrm{I}^{-}(a q)+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(a q) \rightarrow \mathrm{I}_{2}(a q)+2 \mathrm{SO}_{4}{ }^{2-}(a q) \\
& \mathrm{I}_{2}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \rightarrow 2 \mathrm{I}^{-}(a q)+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(a q)
\end{aligned}
$$

This is an extremely fast reaction compared to the reaction of interest.
Note: speed of reaction 2 is essentially speed of reaction 1 !

As long as there is $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ in the reaction mixture, $\left[\mathrm{I}_{2}\right]=0$

When all $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is consumed, I_{2} will accumulate and reaction mixture turns BLUE with starch indicator.

GENERAL PROCEDURE

How do we measure the speed of our reaction? What is the role of the thiosulfate ion?

$$
\mathrm{I}_{2}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \rightarrow 2 \mathrm{I}^{-}(a q)+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(a q)
$$

Now we can determine the rate as:

$$
\text { Rate }=-\frac{\Delta\left[\mathrm{I}_{2}\right]}{\Delta t}=-\frac{1}{2} \frac{\Delta\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]}{\Delta t}=\frac{1}{2} \frac{\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]_{0}}{t_{\mathrm{blue}}}
$$

because

$$
\begin{aligned}
\Delta\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right] & =\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{\text {blue }}-\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{0} \\
& \left.=\begin{array}{c}
0 \\
\\
\Delta\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]
\end{array}=-\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{0}^{2-}\right]_{0}
\end{aligned}
$$

1. Use ice-water mixture to control temperature.
2. Make table for uncatalyzed and catalyzed runs.
3. Be careful with pipetting and buretting.
4. Calibrate the temperature probe with melting point of ice.
5. Measure time to the 1 s . Collect data every second.
6. Set time duration to 600 s .
