EXPERIMENT 5 CHEMICAL KINETICS II Effects of Temperature and Catalysts

> DR. MIOY T. HUYNH CHEMISTRY 136L YALE UNIVERSITY FALL 2018

 $2I^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow I_2(aq) + 2SO_4^{2-}(aq)$

How is the rate of change of each reactant and each product related to each other?

We can express the rate of iodide consumption as

- = 2 × [rate of peroxidisulfate consumption]
- = 2 × [rate of iodine production]
- = [rate of sulfate production]

THE RATE LAW/EQUATION

The reaction is 1^{st} order with respects to both reactants: I⁻ and S₂O₈²⁻

Rate = $k[I^{-}][S_2O_8^{2-}]$ $k = \frac{\text{Rate}}{[I^-][S_2O_8^{2^-}]}$

If the "initial" rate of reaction can be measured/determine experimentally, the value of *k* can be calculated as: $k = \frac{\text{Initial Rate}}{[I^-]_0[S_2O_8^{2-}]_0}$

PURPOSES:

- 1. Temperature dependence
- 2. Effect of catalyst (Cu²⁺)

Axiom: Reaction rate doubles for a 10 °C rise.

Kinetic energy, E

THE ARRHENIUS EQUATION

$$k = Ae^{-\frac{E_{act}}{RT}}$$
 $\ln k = \ln A - \frac{E_{act}}{RT}$
plot ln k vs. 1/T

How does a catalyst increase the speed of a reaction?

- 1. It is not consumed in reaction.
- 2. It lowers the E_{act} .
- 3. It catalyzes both directions.
- 4. It speeds up attainment of equilibrium.

Reaction Coordinate

How do we measure the speed of our reaction? What is the role of the thiosulfate ion $(S_2O_3^{2-})$?

I₂ (aq) + 2S₂O₃^{2−} (aq) \rightarrow 2I[−] (aq) + S₄O₆^{2−} (aq) This is an <u>extremely fast</u> reaction compared to our reaction of interest.

As long as there is $S_2O_3^{2-}$ in the reaction mixture, $[I_2] = 0$

When all $S_2O_3^{2-}$ is consumed, I_2 accumulates. Reaction mixture turns **BLUE** (with starch indicator).

$$|_{2}(aq) + 2S_{2}O_{3}^{2-}(aq) \rightarrow 2I^{-}(aq) + S_{4}O_{6}^{2-}(aq)$$

BECAUSE

$$\Delta[S_2O_3^{2-}] = [S_2O_3^{2-}]_{blue} - [S_2O_3^{2-}]_0$$

= 0 - [S_2O_3^{2-}]_0