CHEMICAL EQUILIBRIUM

EQUILIBRIUM CONSTANT: IODINE + IODINE

→ TRIIODIDE

QUANTITY OF INTEREST

Equilibrium Constants

All closed chemical reactions eventually reach their <u>equilibrium</u> state, where the speeds of the *forward* and *reverse* reactions are equal.

So, there is no net change in concentrations at equilibrium.

For a given temperature, the numerical value of the equilibrium constant (K) for a chemical reaction is a constant that is independent of initial concentrations.

$$a \mathbf{A} + b \mathbf{B} \rightarrow c \mathbf{C} + d \mathbf{D}$$

$$\mathbf{K} = \frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}$$

Equilibrium constants are <u>dimensionless</u>.

QUANTITY OF INTEREST

Equilibrium Constants

If the numerical value of K for a reaction is large, then

equilibrium lies far to the <u>right</u>,

and products dominate over reactants.

Such reactions go to almost 100% "completion."

The vast majority of reactions we have encountered in Chemistry 134L and 136L thus far fall into this category.

Today, we will study a reaction that does not fall in this category.

REACTION OF INTEREST

The triiodide equilibrium

Our focus today is the following equilibrium:

$$\mathbf{I_2}(aq) + \mathbf{I^-}(aq) \rightarrow \mathbf{I_3^-}(aq)$$

which means the equilibrium constant (K) is

$$K = \frac{[I_3^-]_{eq}}{[I^-]_{eq}[I_2]_{eq}}$$

The objective today is to determine the numerical value of K at room temperature.

What are the units for K?

HOW TO DETERMINE VALUE OF K?

We need to know the concentrations of all three species at equilibrium.

Titrations would work, but both I_2 and I_3^- are reactive.

$$I_2(aq) + 2 S_2O_3^{2-}(aq) \rightarrow 2 I^-(aq) + S_4O_6^{2-}(aq)$$

$$I_3^-(aq) + 2 S_2O_3^{2-}(aq) \rightarrow 3 I^-(aq) + S_4O_6^{2-}(aq)$$

If we titrate an aqueous solution containing both I_2 and I_3^- with thiosulfate, we will only be able to calculate the sum

$${[I_2]_{eq,aq} + [I_3^-]_{eq,aq}}$$

HOW TO OVERCOME THE PROBLEM

General Procedure

We can add an immiscible organic solvent, such as n-heptane (shake well).

1

After establishing the following two equilibria:

$$I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$$

$$I_2(aq) \rightleftarrows I_2(n-heptane)$$

Separate the two layers.

Titrate each layer separately.

Titrant: thiosulfate $(S_2O_3^{2-})$

Indicator: starch

SECOND EQUILIBRIUM

General Procedure

$$I_2(aq) \rightleftarrows I_2(n-heptane)$$

We have:

$$K' = \frac{[I_2]_{n-heptane}}{[I_2]_{aqueous}}$$

If we know the value of K', we can figure out $[I_2]_{eq,aq}$

$$[I_2]_{\text{eq,aq}} = \frac{[I_2]_{\text{n-heptane}}}{K'}$$

The numerical value of K' for the distribution of I_2 between water and several other immiscible liquids can be determine independently.

They are available in the chemical literature.

FINALLY

General Procedure

How do we determine $[I_3^-]_{eq,aq}$ and $[I^-]_{eq,aq}$?

$$[I_3^-]_{eq,aq} = \{[I_2]_{eq,aq} + [I_3^-]_{eq,aq}\} - [I_2]_{eq,aq}$$

$$Aqueous$$

$$Layer$$

$$Layer$$

$$Titration$$

$$Titration$$

$$[I^{-}]_{\text{eq,aq}} = [I^{-}]_{0} - [I_{3}^{-}]_{\text{eq,aq}}$$

Material balance & Stoichiometry

Fe(III)-thiocyanate Equilibrium

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftarrows FeSCN^{2+}(aq)$$