O **CHEMICAL EQUILIBRIUM** EFFECT OF INITIAL CONCENTRATIONS: FE(III)-THIOCYANATE

CHEMISTRY 136L // FALL 2019

GIBBS FREE ENERGY

A spontaneous process is one that takes place without (continuous) input of energy.

 ΔG – change in Gibbs free energy

The maximum amount of energy (in the form of work) that can be extracted from a reaction/system.

CHEMISTRY 136L

Chemical Equilibrium

CHEMISTRY 136L

REACTION OF INTEREST

The Fe(III)-thiocyanate equilibrium

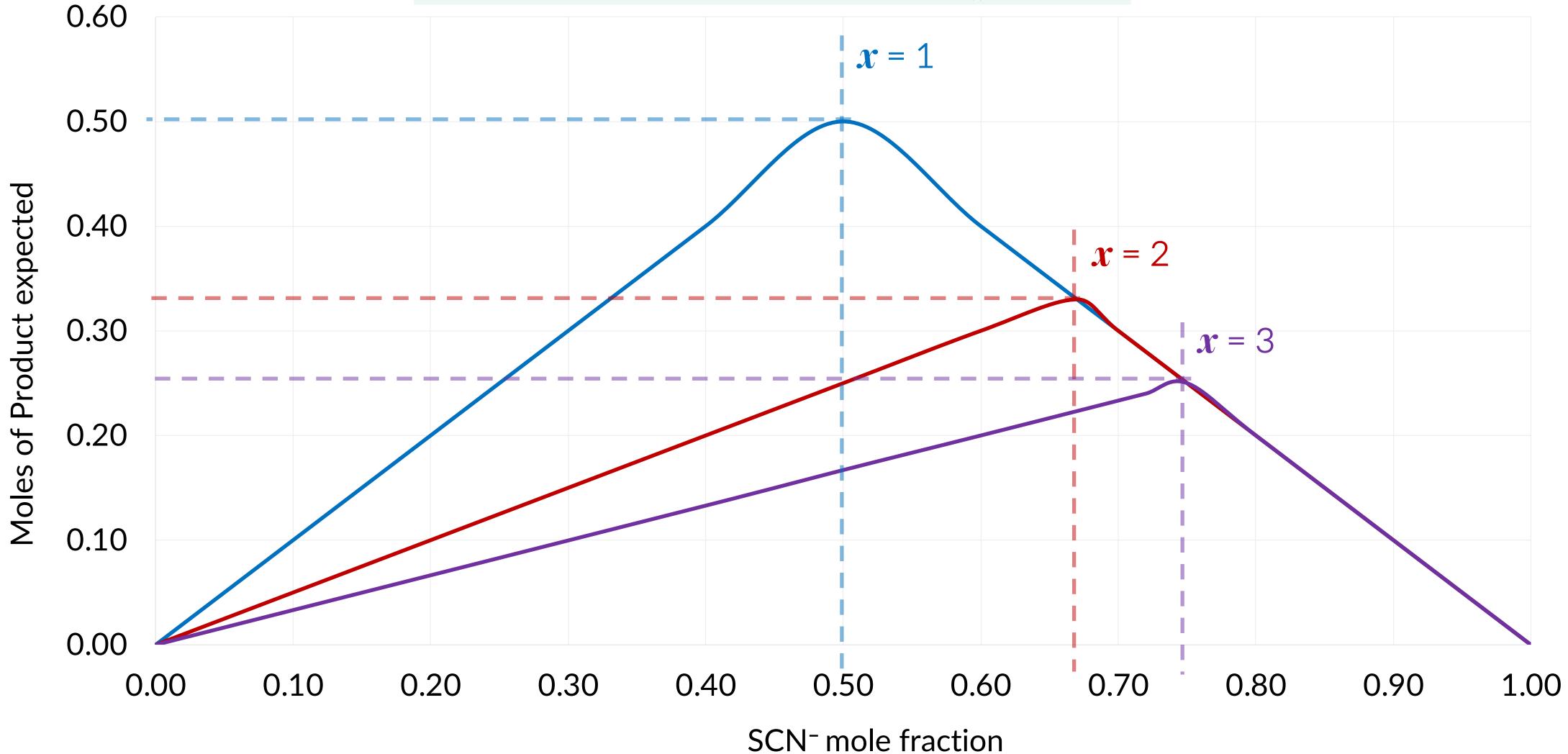
- Our focus today is the following equilibrium:
- $\operatorname{Fe}^{3^+}(aq) + x \operatorname{SCN}^-(aq) \rightleftharpoons [\operatorname{Fe}(\operatorname{SCN})_x]^{3-x}(aq)$
 - where \boldsymbol{x} is a small integer.

Main Purposes

- Stoichiometry of Fe(III)-thiocyanate complex
 - Molar absorptivity (ε) of complex
- Constancy of the value of K (independent of initial concentrations)

PART 1: STOICHIOMETRY OF COMPLEX General idea

- $\operatorname{Fe}^{3+}(aq) + x \operatorname{SCN}^{-}(aq) \rightleftharpoons \operatorname{Fe}(\operatorname{SCN}_{x})^{3-x}(aq)$
- If the product is a 1:1 complex (x = 1), maximum amount of product is formed in solution with mole fraction of $SCN^{-} = 1/2$.


CHEMISTRY 136L


Use Job's method to determine the value of x

- If the product is a 1:2 complex (x = 2), maximum amount of product is formed in solution with mole fraction of $SCN^{-} = 2/3$.
- If the product is a 1:3 complex (x = 3), maximum amount of product is formed in solution with mole fraction of $SCN^{-} = 3/4$.
 - This prediction always holds true.

EXPECTED RESULTS $\operatorname{Fe}^{3^{+}}(aq) + x \operatorname{SCN}^{-}(aq) \rightleftharpoons \operatorname{Fe}(\operatorname{SCN})_{x}^{3^{-x}}(aq)$

PART 2: DETERMINATION OF ε

Molar absorptivity

CHEMISTRY 136L

Use spectrophotometry to determine $\{Fe(SCN)_x\}^{3-x}$

Beer-Lambert Law: $A = \varepsilon cl$

General Procedure

```
Prepare three calibrating solutions with known \{Fe(SCN)_x\}^{3-x}
Measure their absorbances at a chosen wavelength
         Plot absorbance vs. [{Fe(SCN)_x}^{3-x}]
             Determine \varepsilon from the slope
```


PART 3: CONSTANCY OF K

Independent of initial concentrations

 $[Fe^{3^+}]_{eq}$ and

CHEMISTRY 136L

- $\operatorname{Fe}^{3+}(aq) + x \operatorname{SCN}^{-}(aq) \rightleftharpoons \operatorname{Fe}(\operatorname{SCN}_{x})^{3-x}(aq)$
- What is the equilibrium constant (K) expression?
- How do we determine the three concentrations needed?
- Determine [Fe(SCN)²⁺]_{eq} experimentally using Beer-Lambert Law
 - Apply atom conservation (material balance) to calculate: [SCN⁻]_{eq}
 - $[Fe^{3^+}]_{eq} = [Fe^{3^+}]_o [Fe^{3^+}]_{consumed} = [Fe^{3^+}]_o [Fe(SCN)^{2^+}]_{eq}$

Notes

CHEMISTRY 136L

Make solutions first, then take spectra:

- Part 1: nine solutions label A-I (E is max)
- Part 2: three solutions label 1–3
- Part 3: five solutions label J-M
- Part 2: Beer-Lambert plot (<u>accuracy</u> grade, R² > 0.98)
 - Pipet and syringe with care
 - Label everything
 - Avoid contamination (rest equipment on Kimwipes)

