EXPERIMENT 7 Effect of Temperature on Equilibrium

DR. MIOY T. HUYNH CHEMISTRY 136L YALE UNIVERSITY FALL 2018

REACTION
OFFe3+ (aq) + xSCN- (aq) \rightleftharpoons [Fe(SCN)x]3-x (aq)INTEREST

MAIN PURPOSES

Constancy of the value of K (independent of initial concentrations)

Dependence of K on temperature

Determination of ΔH° and ΔS° for this reaction

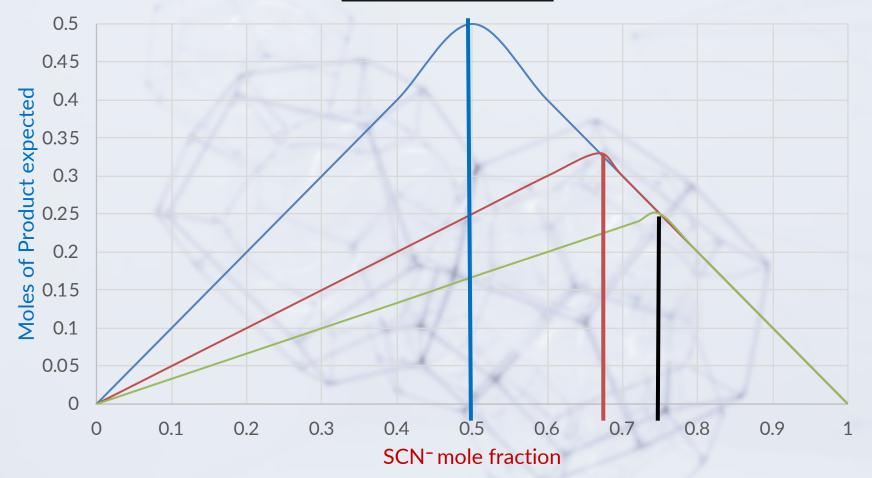
PART 1: DETERMINATION OF THE VALUE OF ε

Spectrophotometry to determine $[Fe(SCN)_x]^{3-x}$ Beer-Lambert Law: A = $\varepsilon c \ell$

Prepare three calibrating solution with known [Fe(SCN)_x]^{3-x}] Measure their absorbances at a chosen wavelength Plot Absorbance vs. [Fe(SCN)_x]^{3-x}] Determine ε from the slope PART 2: STOICHIOMETRY OF THE COMPLEX FORMATION

Use Job's method to determine x in $[Fe(SCN)_x]^{3-x}$]

Beer-Lambert Law: $A = \varepsilon c \ell$


If the product is a 1:1 complex (x = 1), maximum amount of product is formed in solution with mole fraction of $SCN^- = 1/2$

If the product is a 1:2 complex (x = 2), maximum amount of product is formed in solution with mole fraction of $SCN^- = 2/3$

If the product is a 1:3 complex (x = 3), maximum amount of product is formed in solution with mole fraction of $SCN^- = 3/4$

This prediction "always" holds true

EXPECTED RESULT

PART 3: CONSTANCY OF THE VALUE OF K (INDEPENDENT OF INITIAL CONCENTRATIONS)

Can you write the expression for K for this reaction?

How can we determine the three needed concentrations?

Determine $[Fe(SCN)^{2+}]_{eq}$ experimentally using Beer-Lambert Law Apply <u>atom conservation</u> (material balance) to calculate: $[Fe^{3+}]_{eq}$ and $[SCN^{-}]_{eq}$ For example: $[Fe^{3+}]_{eq} = [Fe^{3+}]_0 - [Fe^{3+}]_{consumed} = [Fe^{3+}]_{eq} = [Fe^{3+}]_0 - [Fe(SCN)^{-}]_{eq}$

PART 4: EQUILIBRIUM CONSTANT AND TEMPERATURE

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad \Delta G^{\circ} = -RT \cdot \ln(K)$

Gibbs Relation Yale Van't Hoff Equation

Plot of ln(K) vs. 1/T is expected to linear.

SLOPE = $-\Delta H^{\circ}/R$

Y-INTERCEPT = $\Delta S^{\circ}/R$

In part 3, what is the role of KNO_3 ?

<u>NOTES</u>

Part 1: three solutions (1-3)
 Part 2: nine solutions (A-I)
 Part 3: five solutions (J-M; save L or M)

Make solutions first, then take spectra!

- Part 1: Beer-Lambert plot accuracy grade
 → Pipet and syringe with care
 → Avoid contamination and/or mislabeling
- 3. Calibrate the digital thermometer in ice + water mixture
- 4. Part 4: measure absorbance and temperature
 - \rightarrow Try to measure them "simultaneously"
 - \rightarrow Data collection duration (< 20 sec)
 - \rightarrow 4/5 temperatures <u>below</u> room temperature
 - \rightarrow 5/6 temperatures <u>above</u> room temperature

10+ temperatures total