EXPERIMENT CALORIMETRY (PART II)

DR. MIOY T. HUYNH // YALE UNIVERSITY CHEMISTRY 134L // SPRING 2019

www.mioy.org/chem134

Part A

Intermolecular Forces

Speed of evaporation is a measure of the strengths of intermolecular forces.

For instance: Acetone evaporates readily off your skin. Water evaporates more slowly off your skin.

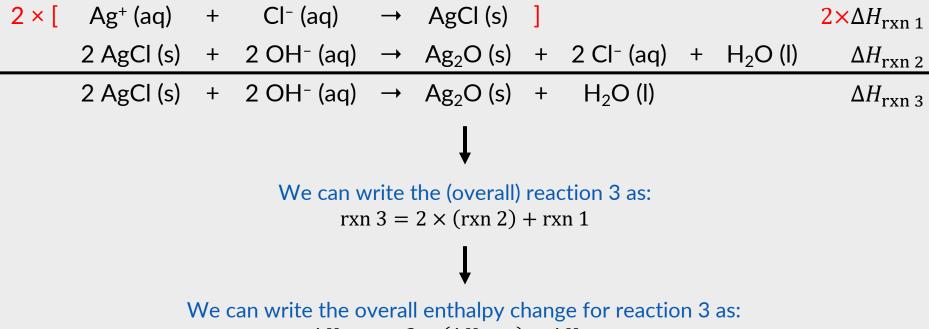
Today we will test:

Methanol	CH₃OH
Acetone	CH ₃ COCH ₃
Isopropanol	(CH ₃) ₂ CHOH
Pentane	CH ₃ (CH ₂) ₃ CH ₃
Hexane	CH ₃ (CH ₂) ₄ CH ₃

Part B

Calorimetry II

HESS'S LAW: If two (or more) chemical equations are combined by addition/subtraction to give an overall chemical equation, the corresponding enthalpy changes (ΔH_n) can also combined by addition/subtraction, in parallel, to give the enthalpy change for the overall reaction (ΔH_{rxn}).


-or-

The overall reaction's enthalpy change (ΔH_{rxn}) is the sum of the reaction enthalpies of the steps (n) into which the overall reaction be divided (ΔH_n).

-or-

The overall reaction's enthalpy change (ΔH_{rxn}) is always the same, regardless if the overall process occurs in one step or through a series of steps (n).

An Example

 $\Delta H_{\rm rxn\,3} = 2 \times (\Delta H_{\rm rxn\,1}) + \Delta H_{\rm rxn\,2}$

This isn't the only way we can calculate the overall enthalpy change though.

Part B

Enthalpies of Formation

The standard enthalpy of formation (or formation enthalpy) of a substance (ΔH_f^0) is the standard enthalpy change of the reaction (ΔH_{rxn}^0) in which <u>one mole</u> of the substance is formed from its <u>elements in their standard states</u>.

The standard enthalpy of formation for an element in its standard state is zero.

Some Examples

These represent formation enthalpies.

C (s, graphite) +
$$O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_f^o = -393.5 \frac{kJ}{mol}$
C (s, graphite) + ½ $O_2(g) \rightarrow CO(g)$ $\Delta H_f^o = -110.5 \frac{kJ}{mol}$

These represent reaction enthalpies.

$$CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \qquad \Delta H_{rxn}^o = -283.0 \frac{kJ}{mol}$$
$$2C(s) + O_2(g) \rightarrow 2 CO(g) \qquad \Delta H_{rxn}^o = -221.0 \frac{kJ}{mol}$$

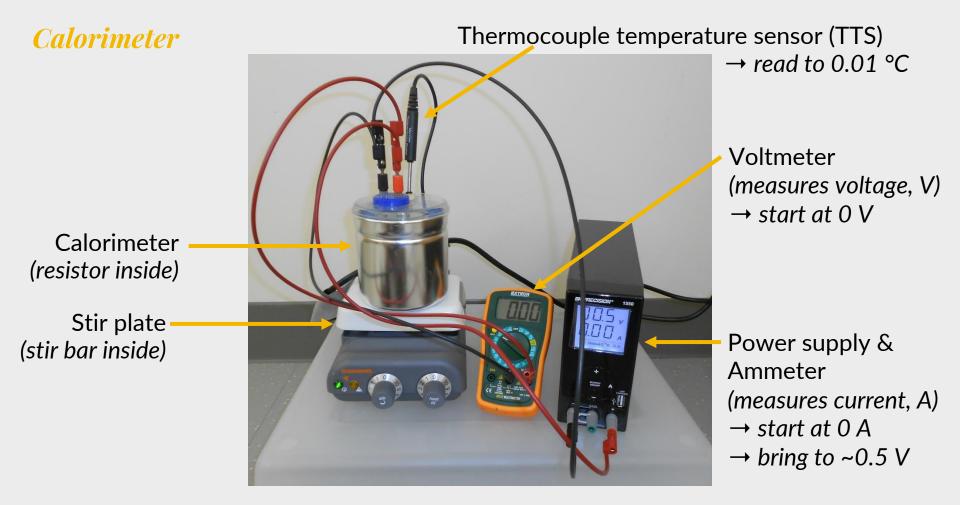
$$\Delta H_{\rm rxn}^{\rm o} = \sum n_{\rm p} \Delta H_{\rm f}^{\rm o}({\rm products}) - \sum n_{\rm R} \Delta H_{\rm f}^{\rm o}({\rm reactants})$$

Today

Reactions of Interest

Mg (s) + 2 H⁺ (aq)
$$\rightarrow$$
 Mg²⁺ (aq) + H₂ (g) $\Delta H_{B1}^{o} = ?$

MgO (s) + 2 H⁺ (aq)
$$\rightarrow$$
 Mg²⁺ (aq) + H₂O (l) $\Delta H_{B2}^{o} = ?$


Purpose

$$Mg (s) + \frac{1}{2} O_2 (g) \rightarrow MgO (s) \qquad \Delta H_f(MgO) = ?$$

Let's apply Hess's Law to our reactions

Mg (s)	+	2 H+ (aq)	\rightarrow	Mg ²⁺ (aq)	+	H ₂ (g)	ΔH_{B1}
Mg ²⁺ (aq)	+	H ₂ O (I)	\rightarrow	MgO (s)	+	2 H+ (aq)	$-\Delta H_{\rm B2}$
H ₂ (g)	+	½ O ₂ (g)	\rightarrow	H ₂ O (I)			$-\Delta H_{\rm f}^{\rm o}$ (H ₂ O)
Mg (s)	+	½ O ₂ (g)	\rightarrow	MgO (s)			$\Delta H_{\rm f}({\rm MgO})$

We can write the overall enthalpy change, which is a formation enthalpy, as: $\Delta H_f(MgO) = \Delta H_{B1} - \Delta H_{B2} + \Delta H_f^o(H_2O)$

Overview

Part A: Intermolecular Forces get 1 liquid sample from hood clamp TP to stand and slant down collect data for ~10 s add one drop of solution onto TP collect data until temperature rises do a duplicate run on same liquid Part BO: Set Up the Calorimeter ~60 mL water in beaker increase current from $0 \rightarrow \sim 1.50$ A Part B1/B2: Reactions of Interest ***~60 mL HCl in beaker***

5

samples

total

Part B1/B2: Reactions of Interest ***~60 mL HCl in beaker*** mini-balance: ~mass of Mg/MgO → analytical balance: exact mass after 2 mins: add Mg when temperature is stable: turn on output after ~150 sec: turn off output

collect data for another 2 mins

Notes

- 1. Change temperature precision to 0.01 °C
- 2. Change time precision to 0.1 s.
- 3. Change data collection duration to 1000 s.
- 4. Take 25 mL 1 M HCl in your 100 mL graduated cylinder. Add water to the 60 mL mark.

Transfer this to your 100 mL beaker.