ACIDS & BASES

MONOPROTIC ACID-BASE TITRATIONS & BUFFERS

CHEMISTRY 136L // FALL 2019

Acids: proton donors

If $K_a > 1$, the acid is strong If $K_a < 1$, the acid is weak If $K_a \ll 1$, the acid is very weak

CHEMISTRY 136L

ACIDS General ideas

 $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$

Generally,

examples: HCl, HNO₃

examples: CH₃COOH, HCOOH

$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ **Bases:** proton acceptors

If $K_b > 1$, the base is strong If $K_{b} < 1$, the base is weak If $K_{\rm b} \ll 1$, the base is very weak

CHEMISTRY 136L

BASES General ideas

Generally,

examples: NaOH, KOH, Ca(OH)₂

examples: CH₃COO⁻, conjugate base of acid

AUTOIONIZATION OF WATER

Always present in aqueous media

When an ACID or a BASE or BOTH are both added to water, three simultaneous equilibria are established.

In many situations, one equilibrium will dominate over the other two.

CHEMISTRY 136L

 $HA(aq) + H_2O(aq) \rightleftharpoons H_3O^+(aq) + A^-(aq)$ $A^{-}(aq) + H_{2}O(l) \rightleftharpoons HA(aq) + OH^{-}(aq)$ $H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$

For any conjugate acid-base pair,

If HA is a strong acid, then A^- is a very weak conjugate base. If HA is a (medium) weak acid, then A^- is a (medium) weak conjugate base. If HA is a very weak acid, then A^- is a strong conjugate base.

CHEMISTRY 136L

CONJUGATE ACID-BASE PAIR

General ideas

 $K_a \times K_b = K_w = 1.0 \times 10^{-14}$

Therefore,

TITRATIONS

CHEMISTRY 136L

Acids & Bases

- We will use NaOH as the strong base today.
 - $pH = -\log[H^+]$ vs. volume NaOH added

Generally,

- Steep rise around the equivalence point the point where the moles of NaOH added equals the initial moles of a (monoprotic) acid.
 - Indicator chosen must change color within this steep rise!
 - End point is the point where there is a distinct, visual change in color.

INDICATORS How they work?

Indicator chosen must change color within this steep rise!


```
Equilibrium for the indicator in solution is:
HIn (aq) \rightleftharpoons H^+ (aq) + In^- (aq)
            K_{a,In} = \frac{[H^+][In^-]}{[HIn]}
                  Therefore,
                [In<sup>-</sup>]
                            K<sub>a,In</sub>
                             [H^+]
```


EXPECTED RESULTS

Volume			
NaOH	pН	$\sigma p H / \sigma V$	
_added (mL)		(mL ⁻ 1)	
0.00	3.25	0.526	
1.00	3.82	0.434	14.00
2.00	4.18	0.292	
3.00	4.40	0.205	
4.00	4.58	0.172	12.00
5.00	4.75	0.172	
6.00	4.92	0.172	
7.00	5.11	0.205	
8.00	5.37	0.260	10.00
8.30	5.45	0.260	
8.65	5.55	0.325	
8.70	5.59	0.497	8.00
8.85	5.65	0.456	
9.15	5.77	0.515	Ц. Ц
9.20	5.84	0.671	
9.33	5.91	0.584	6.00
9.40	5.94	0.751	
9.62	6.13	0.835	
9.70	6.21	0.945	4.00
9.75	6.26	1.286	
9.80	6.33	1.657	
9.85	6.42	1.963	
9.90	6.53	2.531	2.00
9.95	6.66	3.590	
10.10	7.22	5.643	
10.18	7.74	12.371	0.00
10.22	8.94	14.762	
10.29	9.58	12.032	0.00
10.30	9.94	5.654	
10.40	10.17	2.695	
10.50	10.40	2.182	

CHEMISTRY 136L

TITRATIONS: EQUIVALENCE POINTS

Independent of initial concentrations

What would be pH at the *equivalence point* in a strong acid-strong base titration?

> pH = 7 $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

What would be pH at the *equivalence point* in a weak acid-strong base titration?

pH > 7

 $HA(aq) + OH^{-}(aq) \rightarrow H_{2}O(l) + A^{-}(aq)$ $A^{-}(aq) + H_{2}O(l) \rightleftharpoons HA(aq) + OH^{-}(aq)$

CHEMISTRY 136L

Calculating the pH of a buffer

 $[H^+]_{buffer} = K_a \times$

CHEMISTRY 136L

BUFFERS Acids & Bases

Consists of a weak acid-conjugate base pair.

Essential in many biochemical processes.

Buffers have the ability to resist changes in pH when small amounts of strong acid (or strong base) are added.

$$\frac{[HA]_{eq}}{[A^-]_{eq}} \approx K_a \times \frac{[HA]_{initial}}{[A^-]_{initial}}$$

NMTES

The pH electrode is delicate, so handle with care. To work well, it needs to be well-immersed in the solution.

CHEMISTRY 136L

Plot both pH and its first derivative $\left(\frac{\partial pH}{\partial V}\right)$.

Use $\frac{\partial pH}{\partial v}$ to choose NaOH increments during titration.

Near equivalence point, you must use very small increments of NaOH (i.e., one drop at a time).

If not, you will **NOT** be able to determine the equivalence point.

