EXPERIMENT 8 (DAY 2) Acids, Bases, \& Buffers

DR. MIOY T. HUYNH CHEMISTRY 136L
YALE UNIVERSITY
FALL 2018

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(e) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

```
            BASES
    PROTON
    NH
ACCEPTORS
```

If $K_{a}>1$, the acid is strong examples: $\mathrm{HCl}, \mathrm{HNO}_{3}, \ldots$

If $K_{a}<1$, the acid is weak
If $K_{a} \ll 1$, the acid is very weak examples: $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCOOH}, \ldots$

If $K_{b}>1$, the base is strong examples: $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2} \ldots$

If $K_{b}<1$, the base is weak
If $K_{b} \ll 1$, the base is very weak examples: $\mathrm{CH}_{3} \mathrm{COO}^{-}$, any conjugate base

MONOPROTIC AND POLYPROTIC ACIDS

Polyprotic acids have more than one ionizable proton $\left(\mathrm{H}^{+}\right)$.
Some Examples
Sulfuric acid is diprotic
Oxalic acid is diprotic
Citric acid is triprotic
Phosphoric acid is triprotic
Amino acids are polyprotic

Generally, ACID-BASE neutralization reactions are product favored. \downarrow
In principle, when a diprotic acid is titrated with NaOH (a monoprotic strong base), two steep rises can be expected.

But, in practice, if the two K_{a} values are close to each other, then the two steep rises overlap.

The titration curve for oxalic acid with NaOH has two overlapping steps.

HOW DO WE DETERMINE EQUIVALENCE POINT \#1?

In a polyprotic acid versus NaOH titration, how is the volume at the second equivalence point related to the volume at the first equivalence point?

Total volume of NaOH added to reach the second equivalence point

$$
=
$$

$2 \times$ volume of NaOH added to reach the first equivalence point

Titration Curve (oxalic acid/ NaOH)

BUFFERS

Consists of a weak ACID-CONJUGATE BASE pair. They are essential in all biochemical processes.

BuFFERS have the ability to resist change in pH when a small amount of a strong ACID or BASE is added.

CALCULATING THE pH OF A BUFFER

$$
\left[\mathrm{H}^{+}\right]_{\mathrm{buffer}}=K_{\mathrm{a}} \times \frac{[\mathrm{HA}]_{\mathrm{eq}}}{\left[\mathrm{~A}^{-}\right]_{\mathrm{eq}}} \approx K_{\mathrm{a}} \times \frac{[\mathrm{HA}]_{\text {initial }}}{\left[\mathrm{A}^{-}\right]_{\text {initial }}}
$$

THE HALF-EQUIVALENCE POINT $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ of a weak acid $=\mathrm{pH}$ at the half-equivalence point

In a weak ACID (HA)-strong BASE titration, at the half-equivalence point: one half of the initial moles of HA have been neutralized and converted to its CONJUGATE BASE $\left(A^{-}\right)$; the other one half of HA moles are still there.

Thus, the solution in the beaker, at the half-equivalence point, is a BUFFER with equal $[\mathrm{HA}]$ and $\left[\mathrm{A}^{-}\right]$.

$$
\left[\mathrm{H}^{+}\right]_{\text {buffer }} \approx K_{\mathrm{a}} \times \frac{[\mathrm{HA}]_{\text {initial }}}{\left[\mathrm{A}^{-}\right]_{\text {initial }}}=K_{\mathrm{a}}
$$

NOTES

1. The pH electrode is a delicate item, so handle it with care.

To work well, it needs to be well-immersed in the solution.
2. Plot both pH and its first derivative $(\partial \mathrm{pH} / \partial \mathrm{V})$.
\rightarrow Use the latter to judiciously choose NaOH increments.
3. In the vicinity of the EQUIVALENCE POINT, you must use very small increments of base (one drop at a time).
If not, you will not be able to determine the EQUIVALENCE POINT accurately.
4. No lab next week.

