

Spontaneity

Spontaneous Chemical Reactions

Reactions that take place on their own with a decrease in Gibbs free energy ($\Delta G < 0$).

$$Mg(s) + 2 H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$$

Nonspontaneous Chemical Reactions

Reactions that do <u>not</u> take place on their own with an increase in Gibbs free energy ($\Delta G > 0$).

The reverse of a spontaneous reaction will be nonspontaneous.

$$Mg^{2+}$$
 (aq) + H_2 (g) \to Mg (s) + 2 H^+ (aq)

Today

REACTION OF INTEREST

Cu (s) + 2 H⁺ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + H₂ (g)

This is a <u>non</u>spontaneous reaction.

In an electrolytic cell, there are <u>two half-reactions</u>.

Oxidation at the (+) electrode: Cu (s) \rightarrow Cu²⁺ (aq) + 2 e⁻

<u>Reduction</u> at the (-) electrode: $2 H^+$ (aq) + $2 e^- \rightarrow H_2$ (g)

Numerical value of Avogadro's constant (N_A)

$$N_{\rm A} = \frac{\text{\# of electrons}}{\text{moles of electrons}}$$

$$\operatorname{mol} e^{-} = 2 \times (\operatorname{mol} H_{2})$$
 $\operatorname{mol} H_{2} \to n_{H_{2}} = \frac{P_{H_{2}}V}{RT}$

of
$$e^- = \frac{\text{charge flowed}}{\text{charge on 1 } e^-}$$

charge on $1 e^- = 1.6022 \times 10^{-19} \text{ C}$

Charge (C) = Current (A)×time(s)

Current (A) = $\frac{\text{Voltage (V)}}{\text{Resistance (\Omega)}}$

Purpose 1

Purpose 2

Molar mass of Cu

Cu (s) + 2 H⁺ (aq) \rightarrow Cu²⁺ (aq) + H₂ (g)

moles Cu lost = moles of H_2 (g) produced

Notes

- 1. Screw clamp needs to be tight.
- 2. Suck up the sulfuric acid through the gas buret slowly.

- 3. Next week: make-up week
 - Register/check with me today
 - Meet in SCL 111 at 1pm next week