# FINAL EXAM 

 PRACTICE PROBLEMSCHEMISTRY 165B // SPRING 2020

## TABLE OF CONTENTS

(1) KINETICS
(2) EQUILIBRIUM
(3)ACID-BASE
(4)THERMODYNAMICS
(5) ELECTROCHEMISTRY
(6) NUCLEAR CHEMISTRY
(7)ORGANIC CHEMISTRY
(8)BIOCHEMISTRY
(9)TRANSITION METALS

## KINETICS: PROBLEM 1.1

Consider the reaction between nitrogen monoxide and hydrogen gases:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Given the following initial rates data collected at 300 K , determine the rate law for the reaction.

| Expt. | $[\mathrm{NO}]_{0}(\mathrm{M})$ | $\left[\mathrm{H}_{2}\right]_{0}(\mathrm{M})$ | Initial Rate $(\mathrm{M} / \mathrm{min})$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.0060 | 0.0010 | $1.8 \times 10^{-4}$ |
| 2 | 0.0060 | 0.0020 | $3.6 \times 10^{-4}$ |
| 3 | 0.0010 | 0.0060 | $3.0 \times 10^{-5}$ |
| 4 | 0.0020 | 0.0060 | $1.2 \times 10^{-4}$ |

## KINETICS: PROBLEM $\mathbf{1 . 2}$

Consider the reaction between nitrogen monoxide and hydrogen gases:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Given the following initial rates data collected at 300 K , determine the rate constant $k$ (value and units) for the reaction.

| Expt. | $[\mathrm{NO}]_{0}(\mathrm{M})$ | $\left[\mathrm{H}_{2}\right]_{0}(\mathrm{M})$ | Initial Rate $(\mathrm{M} / \mathrm{min})$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.0060 | 0.0010 | $1.8 \times 10^{-4}$ |
| 2 | 0.0060 | 0.0020 | $3.6 \times 10^{-4}$ |
| 3 | 0.0010 | 0.0060 | $3.0 \times 10^{-5}$ |
| 4 | 0.0020 | 0.0060 | $1.2 \times 10^{-4}$ |

## KINETICS: PROBLEM $\mathbf{1 . 3}$

The following concentration-time data are plotted below for the decomposition of nitrogen dioxide gas at 298 K.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

What is the order of the reaction with respect to $\left[\mathrm{NO}_{2}\right]$ ?

| Time $(\mathrm{s})$ | $\left[\mathrm{NO}_{2}\right](\mathrm{M})$ |
| :---: | :---: |
| 10. | 0.0044 |
| 26. | 0.0034 |
| 44. | 0.0027 |
| 70. | 0.0020 |
| 120. | 0.0014 |





Time (s)
Time (s)

## KINETICS: PROBLEM 1.4

Consider the decomposition of $\mathrm{NO}_{2}(\mathrm{~g})$ from Problem 1.3:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Which of the following proposed mechanism(s) is (are) not valid?
Justify your choice briefly.

- answer -

```
(i) }\mp@subsup{\textrm{NO}}{2}{}->\textrm{NO}+\textrm{O
    NO2}+\textrm{O}->\textrm{NO}+\mp@subsup{\textrm{O}}{2}{
(ii) }\mp@subsup{\textrm{NO}}{2}{}+\mp@subsup{\textrm{NO}}{2}{}\rightleftharpoons\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{O}}{4}{}\mathrm{ (fast)
    N2O
    NO
(iii) }\mp@subsup{\textrm{NO}}{2}{}+\mp@subsup{\textrm{NO}}{2}{}->\textrm{NO}+\mp@subsup{\textrm{NO}}{3}{
    NO
(slow)
(fast)
```


## KINETICS: PROBLEM $\mathbf{1 . 5}$

Consider the decomposition of $\mathrm{NO}_{2}(\mathrm{~g})$ from Problem 1.3 and 1.4: $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
The initial concentration of $\left[\mathrm{NO}_{2}\right]_{0}=5.56 \times 10^{-3} \mathrm{M}$. After 500 s have elapsed, the concentration of $\mathrm{NO}_{2}$ is $4.14 \times 10^{-4} \mathrm{M}$.
Calculate the rate constant $k$ (value and units) for the reaction.

## EQUILIBRIUM: PROBLEM 2.1

## Consider the following gaseous equilibrium: $\quad 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$

A 10.0 L vessel contains 10.0 atm of $\mathrm{H}_{2} \mathrm{~S}$ gas at 800 K initially. If the partial pressure of $\mathrm{S}_{2}$ gas is 0.020 atm at equilibrium, what is the value of $K_{\mathrm{c}}$ ?

## EQUILIBRIUM: PROBLEM 2.2

Which of the following changes would increase the concentration of $\left[\mathrm{H}_{2}\right]$ in the following chemical equilibrium?

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad ; \Delta H=+131 \mathrm{~kJ}
$$

## ACID-BASE: PROBLEM 3.1

Benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ is a weak acid with a $K_{\mathrm{a}}=6.25 \times 10^{-5}$ at 298 K .
What is the pH of a 125 mL solution of $0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ ?

## ACID-BASE: PROBLEM 3.2

Hydrazoic acid $\left(\mathrm{N}_{3} \mathrm{H}\right)$ is a weak acid with a $K_{\mathrm{a}}=1.9 \times 10^{-5}$ at 298 K .
To $100 . \mathrm{mL}$ of $0.25 \mathrm{M} \mathrm{N}_{3} \mathrm{H}$ we add 0.50 g of NaOH . What is the pH of the resulting solution?
You may assume no change in volume or temperature.

- answer -


## ACID-BASE: PROBLEM 3.3

A buffer with $\mathrm{pH}=4.87$ is made from 10.0 mL of 0.75 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and 5.0 mL of 2.0 M sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$. Acetic acid is a weak acid with a $K_{\mathrm{a}}=1.8 \times 10^{-5}$ at 298 K .
Calculate the pH of the solution if 0.00010 mol of NaOH are added to the buffer.
You may assume no change in volume or temperature.

- ans\%er -


## THERMODYNAMICS: PROBLEM <br> ```4.1```

Consider the following reaction:
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Given the following thermodynamic data at $25^{\circ} \mathrm{C}$, calculate the standard Gibbs free energy change ( $\Delta G_{\mathrm{rxn}}^{\mathrm{o}}$ ) at $25^{\circ} \mathrm{C}$.

| $\Delta G_{\mathrm{f}}^{\mathrm{o}}\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$ | -1797.4 | -1322.0 | -228.6 |
| :---: | :---: | :---: | :---: |
| $\Delta H_{\mathrm{f}}^{\mathrm{o}}\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$ | -2022.6 | -1434.5 | -241.8 |
| $S^{\circ}\left(\frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\right)$ | 194.1 | 106.5 | 188.8 |

- answer -

There are two ways to find the value of $\Delta G_{\mathrm{rxn}}^{\mathrm{o}}$ :

## THERMODYNAMICS: PROBLEM 4.2

Consider the following decomposition reaction:

$$
2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

Given the following thermodynamic data at $25^{\circ} \mathrm{C}$, determine if the decomposition reaction is spontaneous at 800 K .

|  | $\mathrm{HgO}(\mathrm{s})$ | $\mathrm{Hg}(\mathrm{l})$ | $\mathrm{O}_{2}(\mathrm{~g})$ |
| :---: | :---: | :---: | :---: |
| $\Delta G_{\mathrm{f}}^{\mathrm{o}}\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$ | -58.5 | 0 | 0 |
| $\Delta H_{\mathrm{f}}^{\mathrm{o}}\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$ | -90.83 | 0 | 0 |
| $S^{\circ}\left(\frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\right)$ | 70.29 | 75.9 | 205.0 |

## ELECTROCHEMISTRY: PROBLEM 5.1

Using the following table of standard reduction potentials, which of the following redox reactions represent spontaneous reactions taking place in a voltaic/Galvanic cell?

| Half-reaction | $E^{\circ}(\mathrm{V})$ |
| :--- | :---: |
| $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$ | +0.800 |
| $\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$ | -0.136 |
| $\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$ | -0.257 |
| $\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}(\mathrm{s})$ | -1.185 |
| $\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$ | -1.662 |
| $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$ | -2.710 |

(a) $\mathrm{Mn}(\mathrm{s})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s})$
(b) $\mathrm{Mn}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s})$
(c) $\mathrm{Mn}(\mathrm{s})+2 \mathrm{Na}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{Na}(\mathrm{s})$
(d) $3 \mathrm{Mn}(\mathrm{s})+2 \mathrm{Al}^{3+}(\mathrm{aq}) \rightarrow 3 \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{s})$
(e) $\mathrm{Mn}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$

## ELECTROCHEMISTRY: PROBLEM 5.2

A voltaic/Galvanic cell is made from a compartment with $1.20 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ and $1.10 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$, a compartment with $0.95 \mathrm{M} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{2}$ and $1.00 \mathrm{M} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$, both at $25^{\circ} \mathrm{C}$, connected by a wire, salt bridge, and two platinum electrodes. Calculate the initial potential of this cell.

| Half-reaction | $E^{\circ}(\mathrm{V})$ |
| :--- | :---: |
| $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$ | +0.770 |
| $\mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq})$ | -0.410 |
| $\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$ | -0.447 |
| $\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$ | -0.740 |

## ELECTROCHEMISTRY: PROBLEM 5.3

Sodium metal ( Na ) can be obtained by electrolyzing molten NaCl . What mass of sodium metal can be produced when molten NaCl is electrolyzed for 10.3 hours with 5.13 A of current?

| Half-reaction | $E^{\circ}(\mathrm{V})$ |
| :--- | :---: |
| $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$ | +1.358 |
| $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$ | -2.710 |

## NUCLEAR CHEMISTRY: PROBLEM 6.1

For each of the following nuclides, predict the types of radioactive decay and reactants/products of such decays.
$\qquad$

## Nuclide

(a) $\quad{ }^{37} \mathrm{Ca}$
(b) $\quad{ }^{34} \mathrm{P}$
(c) $\quad{ }^{212} \mathrm{Fr}$
(d) $\quad{ }^{129} \mathrm{Sb}$

## NUCLEAR CHEMISTRY: PROBLEM 6.2

$\mathrm{A}^{8} \mathrm{~B}$ nuclide decays into a ${ }^{8} \mathrm{Be}$ nuclide through positron emission. Calculate the energy produced from this type of radioactive decay based on the following masses: ${ }^{8} \mathrm{~B}(8.02460 \mathrm{amu}),{ }^{8} \mathrm{Be}(8.00530 \mathrm{amu})$, and ${ }_{+1}^{0} \beta(0.00055 \mathrm{amu})$.

$$
\text { Recall: } \quad 1 \mathrm{amu}=1.6605 \times 10^{-27} \mathrm{~kg} \quad \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad 1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

NUCLEAR CHEMISTRY: PROBLEM 6.3
A piece of paper from an ancient scroll undergoes ${ }^{14} \mathrm{C}$-decay with a rate of 9.07 decays $/ \mathrm{min}$. A fresh piece of paper also undergoes ${ }^{14} \mathrm{C}$-decay but with a rate of 13.6 decays $/ \mathrm{min}$. If the half-life for ${ }^{14} \mathrm{C}$-decay is 5730 years, how old is the scroll? - ans\%er -

## ORGANIC CHEMISTRY: PROBLEM 7.1

For the two compounds shown below, identify if the following functional groups are present.


## ORGANIC CHEMISTRY: PROBLEM 7.2

Choose the possible product(s) for the reaction between pentane and $\mathrm{Cl}_{2}$ using UV radiation.

\author{

- answer -
}



## ORGANIC CHEMISTRY: PROBLEM 7.3

Choose the possible product(s) for the addition reaction between 2-pentene and $\mathrm{Cl}_{2}$.

\author{

- answer -
}



## ORGANIC CHEMISTRY: PROBLEM 7.4

Choose the possible product(s) for the addition reaction between 2-pentene and HCl .

\author{

- answer -
}



## ORGANIC CHEMISTRY: PROBLEM 7.5

Choose the possible major product(s) for the addition reaction between 2-methyl-2-butene, water, and an acid catalyst.

## - ans\%er -



## ORGANIC CHEMISTRY: PROBLEM 7.6

Which of the following compounds could be oxidized to produce a ketone?

## - ans\%er -



## ORGANIC CHEMISTRY: PROBLEM 7.7

Which of the following compound could be mixed with $\mathrm{NaOCH}_{3}$ to make compound 16 ?

\author{

- ans\%er -
}



## ORGANIC CHEMISTRY: PROBLEM 7.8

Which of the following compounds could exhibit geometric isomerism?

\author{

- ans\%er -
}



## ORGANIC CHEMISTRY: PROBLEM 7.8

Which of the following compounds contains a chiral carbon center?

\author{

- ans\%er -
}



## ORGANIC CHEMISTRY: PROBLEM 7.9

Choose any two compounds that can be mixed together with an acid catalyst to produce an ester via condensation.

\author{

- ans\%er -
}



## BIOCHEMISTRY: PROBLEM $\mathbf{8 . 1}$

The Haworth projection for the D-Idose pyranose is shown below. Which is the correct Fischer projection for D-Idose?

- anster -


D-Idose

(A)

(B)

(C)

## BIOCHEMISTRY: PROBLEM $\mathbf{8 . 2}$

The trisaccharaides maltotriose, melezitose, and kestose are shown below. Which is a reducing sugar?


Maltotriose


Melezitose


Kestose

## BIOCHEMISTRY: PROBLEM $\mathbf{8 . 3}$

The tripeptide shown below is comprised of three amino acids. Which amino acid would travel the farthest toward the positive electrode during electrophoresis with a pH = 6 buffer.


## TRANSITION METALS: PROBLEM 9.1

Dichlorobisoxalatocobaltate(III) can exist as three optical isomer. One is drawn below. Draw the other two stereoisomers.


## TRANSITION METALS: PROBLEM 9.2

You have three colored solutions: (1) violet, (2) yellow, and (3) green. Match each of the colored solutions (1-3) to the corresponding complex ions: (a) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, (b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, and (c) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$.

$$
\text { Spectrochemical series: } \mathrm{CN}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{CN}^{-}>\text {en }>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}
$$

## TRANSITION METALS: PROBLEM 9.3

For each pair of complex ions, determine: (a) the number of $3 d$ electrons and oxidation state, (b) if each is high- or low-spin, (c) if each is paramagnetic or diamagnetic, and (d) the magnetic moment ( $\mu_{\text {eff }}$ ).

```
Spectrochemical series: CN- > NO2-
```

| Complex ions | No. 3d electrons? | Spin? | Magnetism? | $\mu_{\text {eff }}$ (B.M.) |
| :---: | :---: | :---: | :---: | :---: |
| (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ |  |  |  |  |
| $\mathrm{Na}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ |  |  |  |  |
| (ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ |  |  |  |  |
| $\mathrm{K}_{3}\left[\mathrm{CoF}_{6}\right]$ |  |  |  |  |

