Ideal Gas Law(s)

DR. MIOY T. HUYNH
YALE UNIVERSITY

CHEMISTRY 161
FALL 2018
www.mioy.org/chem161

What is pressure?

A simple definition of pressure (P) is the collision of gas particles with the walls of the container.

If we say that each collision strikes the wall with a certain force (F) over a particular area of the wall (A):

$$
P=\frac{F}{A}
$$

There are many units for pressure, but you should be comfortable with four of these:

Unit	Value
Atmosphere (atm)	1 atm
Millimeter of mercury $(\mathrm{mm} \mathrm{Hg})$	$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$
Torr	$1 \mathrm{~atm}=760 \mathrm{Torr}$
Bar	$1 \mathrm{~atm}=1.01325 \mathrm{bar}$

GASES

1. Gases take up the volume of the container - has no definite shape or volume
2. Gases mix well - diffusion
3. Gases exert pressure

THINGS WE CARE ABOUT FOR GASES

- Pressure (P)
- Volume (V)
- Temperature (T)
- Moles (n)

We'll come back to these in a moment.

ATMOSPHERIC PRESSURE

Remember that we are always under the pressure of the atmosphere, which is defined as 1 atm .

Any system that is allowed to equilibrate with the pressure of the atmosphere will try to obtain atmospheric pressure.

This is how balloons work because they can change their volume to maintain atmospheric pressure inside.

Ideal Gas vs. Real Gas

When do gases behave ideally?

- When pressure is low.
- When temperature is high.
- When the volume of the container is much larger than the volume of the actual gas particles.

Ideal Gas vs. Real Gas

When do gases behave ideally?

- When pressure is low.
- When temperature is high.
- When the volume of the container is much larger than the volume of the actual gas particles.

When do gases behave non-ideally? Or when are gases "real"?

- When pressure is high because the intermolecular (van der Waals) interactions between the gases start to become important.

Ideal Gas vs. Real Gas

When do gases behave ideally?

- When pressure is low.
- When temperature is high.
- When the volume of the container is much larger than the volume of the actual gas particles.

When do gases behave non-ideally? Or when are gases "real"?

- When pressure is high because the intermolecular (van der Waals) interactions between the gases start to become important.
- When the container volume becomes small because then the volume of the actual gas particles themselves need to be accounted for.

Ideal Gas vs. Real Gas

When do gases behave ideally?

- When pressure is low.
- When temperature is high.
- When the volume of the container is much larger than the volume of the actual gas particles.

When do gases behave non-ideally? Or when are gases "real"?

- When pressure is high because the intermolecular (van der Waals) interactions between the gases start to become important.
- When the container volume becomes small because then the volume of the actual gas particles themselves need to be accounted for.
- When the temperature is extremely low because the gas particles need some amount of kinetic energy to move around and exert pressure.

Ideal Gas vs. Real Gas

When do gases behave ideally?

- When pressure is low.
- When temperature is high.
- When the volume of the container is much larger than the volume of the actual gas particles.

When do gases behave non-ideally? Or when are gases "real"?

- When pressure is high because the intermolecular (van der Waals) interactions between the gases start to become important.
- When the container volume becomes small because then the volume of the actual gas particles themselves need to be accounted for.
- When the temperature is extremely low because the gas particles need some amount of kinetic energy to move around and exert pressure.

Ideal conditions result in gas particles hitting each other less often so we can get around having to deal with the intermolecular, attractive forces between the particles.

The Ideal Gas Law

$\mathrm{PV}=\mathrm{nRT}$

$$
\begin{gathered}
\mathrm{P}=\text { absolute pressure (units: atm) } \\
\mathrm{V}=\text { volume (units: } \mathrm{L} \text {) } \\
\mathrm{n}=\text { number of moles (units: mol) } \\
\mathrm{T}=\text { absolute temperature (units: } \mathrm{K} \text {) } \\
\mathrm{R}=\text { universal gas constant }\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)
\end{gathered}
$$

REFERENCE POINTS FOR GASES

Standard Temperature and Pressure (STP): $\quad \mathrm{P}=1 \mathrm{~atm}$ and $273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$

Molar Volume: volume occupied by one mole any ideal gas at STP $=22.4 \mathrm{~L}$

ALWAYS WORK IN ABSOLUTE TEMPERATURE SCALE (K)! ALWAYS WORK IN ABSOLUTE PRESSURE SCALE (ATM)!

Determine the size of a balloon filled with 4.00 moles of helium gas if the room is at 1.00 atm and $22^{\circ} \mathrm{C}$.

Determine the size of a balloon filled with 4.00 moles of helium gas if the

 room is at 1.00 atm and $22^{\circ} \mathrm{C}$.Start by collecting the information we know:

Determine the size of a balloon filled with 4.00 moles of helium gas if the

 room is at 1.00 atm and $22^{\circ} \mathrm{C}$.Start by collecting the information we know:

$$
\begin{aligned}
\mathrm{P} & =1.00 \mathrm{~atm} \\
\mathrm{~V} & =? \\
\mathrm{n} & =4.00 \mathrm{~mol} \\
\mathrm{~T} & =22^{\circ} \mathrm{C}=295.15 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{R}=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Determine the size of a balloon filled with 4.00 moles of helium gas if the

 room is at 1.00 atm and $22^{\circ} \mathrm{C}$.Start by collecting the information we know:

$$
\begin{aligned}
\mathrm{P} & =1.00 \mathrm{~atm} \\
\mathrm{~V} & =? \\
\mathrm{n} & =4.00 \mathrm{~mol} \\
\mathrm{~T} & =22^{\circ} \mathrm{C}=295.15 \mathrm{~K}
\end{aligned}
$$

Set up the ideal gas law and solve for V :

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\mathrm{R}=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Determine the size of a balloon filled with 4.00 moles of helium gas if the

 room is at 1.00 atm and $22^{\circ} \mathrm{C}$.Start by collecting the information we know:

$$
\begin{aligned}
\mathrm{P} & =1.00 \mathrm{~atm} \\
\mathrm{~V} & =? \\
\mathrm{n} & =4.00 \mathrm{~mol} \\
\mathrm{~T} & =22^{\circ} \mathrm{C}=295.15 \mathrm{~K}
\end{aligned}
$$

Set up the ideal gas law and solve for V :

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{~V} & =\frac{\mathrm{nRT}}{\mathrm{P}}
\end{aligned}
$$

Determine the size of a balloon filled with 4.00 moles of helium gas if the

 room is at 1.00 atm and $22^{\circ} \mathrm{C}$.Start by collecting the information we know:

$$
\begin{aligned}
\mathrm{P} & =1.00 \mathrm{~atm} \\
\mathrm{~V} & =? \\
\mathrm{n} & =4.00 \mathrm{~mol} \\
\mathrm{~T} & =22^{\circ} \mathrm{C}=295.15 \mathrm{~K}
\end{aligned}
$$

Set up the ideal gas law and solve for V :

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{~V} & =\frac{\mathrm{nRT}}{\mathrm{P}} \\
& =\frac{(4.00 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(295 \cdot{ }_{15} \mathrm{~K}\right)}{1.00 \mathrm{~atm}}
\end{aligned}
$$

Determine the size of a balloon filled with 4.00 moles of helium gas if the room is at 1.00 atm and $22^{\circ} \mathrm{C}$.

Start by collecting the information we know:

$$
\begin{aligned}
\mathrm{P} & =1.00 \mathrm{~atm} \\
\mathrm{~V} & =? \\
\mathrm{n} & =4.00 \mathrm{~mol} \\
\mathrm{~T} & =22^{\circ} \mathrm{C}=295.15 \mathrm{~K}
\end{aligned}
$$

Set up the ideal gas law and solve for V :

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{~V} & =\frac{\mathrm{nRT}}{\mathrm{P}} \\
& =\frac{(4.00 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(295.15 \mathrm{~K})}{1.00 \mathrm{~atm}} \\
\mathrm{~V} & =96.9 \mathrm{~L}
\end{aligned}
$$

$$
\mathrm{R}=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

Start by recognizing that the contents of the bulb are at STP (1 atm and $0^{\circ} \mathrm{C}$).

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

Start by recognizing that the contents of the bulb are at STP (1 atm and $0^{\circ} \mathrm{C}$).

This means that 1 mole of the gas will occupy 22.4 L of volume.

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

Start by recognizing that the contents of the bulb are at STP (1 atm and $0^{\circ} \mathrm{C}$).

This means that 1 mole of the gas will occupy 22.4 L of volume.

We can use the following dimensional analysis to find the total number of moles:

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

Start by recognizing that the contents of the bulb are at STP (1 atm and $0^{\circ} \mathrm{C}$).

This means that 1 mole of the gas will occupy 22.4 L of volume.

We can use the following dimensional analysis to find the total number of moles:

$$
500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=0.02232 \mathrm{~mol} \mathrm{gas}
$$

A bulb with a volume of 500.0 mL is filled with a gas at STP. How many moles of gas are in the bulb?

Start by recognizing that the contents of the bulb are at STP (1 atm and $0^{\circ} \mathrm{C}$).

This means that 1 mole of the gas will occupy 22.4 L of volume.

We can use the following dimensional analysis to find the total number of moles:

$$
500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=0.02232 \mathrm{~mol} \mathrm{gas}
$$

Alternatively, use the Ideal Gas Law: $\quad \mathrm{PV}=\mathrm{nRT}$

$$
\begin{aligned}
\mathrm{n} & =\frac{\mathrm{PV}}{\mathrm{RT}} \\
& =\frac{(1.0 \mathrm{~atm})\left(500.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(273.15 \mathrm{~K})} \\
\mathrm{n} & =0.02232 \mathrm{~mol} \text { gas }
\end{aligned}
$$

Deriving the \mathbf{P} vs. \mathbf{n} relationship

Start by understanding that for us to relate P and n, T and V must both be constant.
So, we can organize the initial $\left(P_{1}, V_{1}, n_{1}, V_{1}\right)$ and final $\left(P_{2}, V_{2}, n_{2}, V_{2}\right)$ conditions of our gas system:

Deriving the \mathbf{P} vs. \mathbf{n} relationship

Start by understanding that for us to relate P and n, T and V must both be constant.
So, we can organize the initial $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{n}_{1}, \mathrm{~V}_{1}\right)$ and final $\left(\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{n}_{2}, \mathrm{~V}_{2}\right)$ conditions of our gas system:

Initial	Final	
P_{1}		
$\mathrm{~V}_{1}$	$=$	P_{2}
n_{1}		
$\mathrm{~V}_{2}$	$=$	n_{2}

Deriving the \mathbf{P} vs. \mathbf{n} relationship

Start by understanding that for us to relate P and n, T and V must both be constant.
So, we can organize the initial $\left(P_{1}, V_{1}, n_{1}, V_{1}\right)$ and final $\left(P_{2}, V_{2}, n_{2}, V_{2}\right)$ conditions of our gas system:

Initial	Final	
P_{1}		P_{2}
$\mathrm{~V}_{1}$	$=$	V_{2}
n_{1}		n_{2}
$\mathrm{~T}_{1}$	$=$	T_{2}

Notice how V is constant $\left(V_{1}=V_{2}\right)$ and T is constant $\left(T_{1}=T_{2}\right)$.

Now you want to rearrange the ideal gas law to put the conditions that change on one side and the conditions that are constant on the other:

Deriving the \mathbf{P} vs. n relationship

Start by understanding that for us to relate P and n, T and V must both be constant.
So, we can organize the initial $\left(P_{1}, V_{1}, n_{1}, V_{1}\right)$ and final $\left(P_{2}, V_{2}, n_{2}, V_{2}\right)$ conditions of our gas system:

Initial	Final	
P_{1}		P_{2}
$\mathrm{~V}_{1}$	$=$	V_{2}
n_{1}		n_{2}
$\mathrm{~T}_{1}$	$=$	T_{2}

Notice how V is constant $\left(V_{1}=V_{2}\right)$ and T is constant $\left(T_{1}=T_{2}\right)$.

Now you want to rearrange the ideal gas law to put the conditions that change on one side and the conditions that are constant on the other:

Initial	Final
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \mathrm{RT}_{1}$	$\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{n}_{2} \mathrm{RT}_{2}$
$\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{RT}_{1}}{\mathrm{~V}_{1}}$	$\frac{\mathrm{P}_{2}}{\mathrm{n}_{2}}=\frac{\mathrm{RT}_{2}}{\mathrm{~V}_{2}}$

Deriving the \mathbf{P} vs. \mathbf{n} relationship

Start by understanding that for us to relate P and n, T and V must both be constant.
So, we can organize the initial $\left(P_{1}, V_{1}, n_{1}, V_{1}\right)$ and final $\left(P_{2}, V_{2}, n_{2}, V_{2}\right)$ conditions of our gas system:

Initial		Final
P_{1}		P_{2}
$\mathrm{~V}_{1}$	$=$	V_{2}
n_{1}		n_{2}
$\mathrm{~T}_{1}$	$=$	T_{2}

Notice how V is constant $\left(V_{1}=V_{2}\right)$ and T is constant $\left(T_{1}=T_{2}\right)$.

Now you want to rearrange the ideal gas law to put the conditions that change on one side and the conditions that are constant on the other:

Now we have all the constants on one side!
This means the right-hand side of both equations are exactly the same and we can set them

Initial	Final
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \mathrm{RT}_{1}$	$\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{n}_{2} \mathrm{RT}_{2}$
$\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{RT}_{1}}{\mathrm{~V}_{1}}$	$\frac{\mathrm{P}_{2}}{\mathrm{n}_{2}}=\frac{\mathrm{RT}_{2}}{\mathrm{~V}_{2}}$

Deriving the \mathbf{P} vs. \mathbf{n} relationship

Start by understanding that for us to relate P and n, T and V must both be constant.
So, we can organize the initial $\left(P_{1}, V_{1}, n_{1}, V_{1}\right)$ and final $\left(P_{2}, V_{2}, n_{2}, V_{2}\right)$ conditions of our gas system:

Initial	Final	
P_{1}		P_{2}
$\mathrm{~V}_{1}$	$=$	V_{2}
n_{1}		n_{2}
$\mathrm{~T}_{1}$	$=$	T_{2}

Notice how V is constant $\left(V_{1}=V_{2}\right)$ and T is constant $\left(T_{1}=T_{2}\right)$.

Now you want to rearrange the ideal gas law to put the conditions that change on one side and the conditions that are constant on the other:

Now we have all the constants on one side!
This means the right-hand side of both equations are exactly the same and we can set them equal to each other:

$$
\begin{array}{cc}
\text { Initial } & \text { Final } \\
\hline \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \mathrm{RT}_{1} & \mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{n}_{2} \mathrm{RT}_{2} \\
\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{RT}_{1}}{\mathrm{~V}_{1}} & \frac{P_{2}}{\mathrm{n}_{2}}=\frac{\mathrm{RT}_{2}}{\mathrm{~V}_{2}} \\
\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{R T}{V}=\frac{P_{2}}{\mathrm{n}_{2}}
\end{array}
$$

Note: I like to make the $V_{1}=V_{2}=V$
and $T_{1}=T_{2}=T$

Deriving the \mathbf{P} vs. \mathbf{n} relationship

Start by understanding that for us to relate P and n, T and V must both be constant.
So, we can organize the initial $\left(P_{1}, V_{1}, n_{1}, V_{1}\right)$ and final $\left(P_{2}, V_{2}, n_{2}, V_{2}\right)$ conditions of our gas system:

Initial		Final
P_{1}		P_{2}
V_{1}	$=$	V_{2}
n_{1}		n_{2}
T_{1}	$=$	T_{2}

Notice how V is constant $\left(V_{1}=V_{2}\right)$ and T is constant $\left(T_{1}=T_{2}\right)$.

Now you want to rearrange the ideal gas law to put the conditions that change on one side and the conditions that are constant on the other:

Now we have all the constants on one side!
This means the right-hand side of both equations are exactly the same and we can set them

Initial	Final
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \mathrm{RT}_{1}$	$\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{n}_{2} \mathrm{RT}_{2}$
$\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{RT}_{1}}{\mathrm{~V}_{1}}$	$\frac{\mathrm{P}_{2}}{\mathrm{n}_{2}}=\frac{\mathrm{RT}_{2}}{\mathrm{~V}_{2}}$

$$
\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{RT}}{\mathrm{~V}}=\frac{\mathrm{P}_{2}}{\mathrm{n}_{2}}
$$

Note: I like to make the $V_{1}=V_{2}=V$

$$
\text { and } T_{1}=T_{2}=T
$$

$$
\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{n}_{2}}
$$

Deriving the all the other gas laws:

Work your way through these to make sure you understand why they work (like I did on the previous slide)

Volume vs. Moles (V vs. n) $\mathrm{V} \propto \mathrm{n}$ (constant T, P) $\frac{\mathrm{v}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}$	Pressure vs. Moles (P vs. n) $\mathrm{P} \propto \mathrm{n}$ (constant T, V) $\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{n}_{2}}$	$\begin{gathered} \mathrm{P} \propto \frac{1}{\mathrm{~V}}(\text { constant } \mathrm{n}, \mathrm{~T}) \\ \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \end{gathered}$
$\begin{aligned} & \frac{\mathrm{I}}{P_{1}}=\frac{\mathrm{II}}{P_{2}} \quad \begin{array}{l} \text { Change } \\ V_{1} \\ V_{2} \\ V_{2} \end{array} \quad \begin{array}{l} \text { Constant } \\ n_{1} \\ T_{1}=n_{2} \end{array} \quad \frac{V_{1}}{n_{1}}=\frac{R T / P}{P}=\frac{V_{2}}{n_{2}} \end{aligned}$	$\begin{aligned} & \frac{\text { I }}{P_{1}} P_{P_{2}} \quad \frac{\text { Change }}{P / n}=\frac{\text { Constant }}{R T / V} \\ & V_{1}=V_{2} \\ & n_{1} \\ & T_{1}=n_{2} \end{aligned} \quad \frac{P_{1}}{n_{1}}=\frac{R T}{V}=\frac{P_{2}}{n_{2}}$	
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=$	$\begin{aligned} & \mathrm{T} \text { (constant } \mathrm{n}, \mathrm{~V} \text {) } \\ & \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \end{aligned}$	$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
	$\begin{array}{ll} \frac{1}{1} & \text { II } \\ P_{1} & P_{2} \end{array} \quad \frac{\text { Change }}{P / T}=\frac{\text { Constant }}{n R / V}$	$\begin{array}{lll} \begin{array}{lll} P_{1} & \text { II } & P_{2} \\ V_{1} & V_{2} & \text { Change } \\ V_{1} & P V / T \end{array}=\frac{\text { Constant }}{n R} \\ n_{1} & =n_{2} & \frac{P_{1} V_{1}}{T_{1}}=n R=\frac{P_{2} V_{2}}{T_{1}} \end{array}$

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.

Start by collecting the information we know:

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.

Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{V}_{1}=6.0 \mathrm{~L} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=-25^{\circ} \mathrm{C}=284.15 \mathrm{~K} & \mathrm{~T}_{2}=72^{\circ} \mathrm{C}=345 .{ }^{\circ} \mathrm{K}
\end{array}
$$

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen

 gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{V}_{1}=6.0 \mathrm{~L} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=-25^{\circ} \mathrm{C}=284.15 \mathrm{~K} & \mathrm{~T}_{2}=72{ }^{\circ} \mathrm{C}=345 .{ }^{\circ} \mathrm{K}
\end{array}
$$

P and n are constant.

Set up the gas law and solve for final volume $\left(\mathrm{V}_{2}\right)$:

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen

 gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{V}_{1}=6.0 \mathrm{~L} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=-25^{\circ} \mathrm{C}=284 .{ }^{\circ} \mathrm{K} \mathrm{~K} & \mathrm{~T}_{2}=72^{\circ} \mathrm{C}=345.15 \mathrm{~K}
\end{array}
$$

P and n are constant.

Set up the gas law and solve for final volume $\left(\mathrm{V}_{2}\right)$:

$$
\begin{aligned}
& \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
& \mathrm{~V}_{2}=\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}
\end{aligned}
$$

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen

 gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{V}_{1}=6.0 \mathrm{~L} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=-25^{\circ} \mathrm{C}=284 .{ }^{\circ} \mathrm{K} \mathrm{~K} & \mathrm{~T}_{2}=72{ }^{\circ} \mathrm{C}=345.15 \mathrm{~K}
\end{array}
$$

P and n are constant.

Set up the gas law and solve for final volume $\left(\mathrm{V}_{2}\right)$:

$$
\begin{aligned}
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}} & =\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
\mathrm{~V}_{2} & =\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}} \\
& =\frac{(6.0 \mathrm{~L})\left(345 \cdot{ }_{15} \mathrm{~K}\right)}{248 \cdot{ }_{15} \mathrm{~K}}
\end{aligned}
$$

Given 6.0 L of nitrogen gas at $-25^{\circ} \mathrm{C}$, what volume will the nitrogen

 gas occupy at $72^{\circ} \mathrm{C}$? Assume constant pressure.Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{V}_{1}=6.0 \mathrm{~L} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=-25^{\circ} \mathrm{C}=284.15 \mathrm{~K} & \mathrm{~T}_{2}=72{ }^{\circ} \mathrm{C}=345.15 \mathrm{~K}
\end{array}
$$

P and n are constant.

Set up the gas law and solve for final volume $\left(\mathrm{V}_{2}\right)$:

$$
\begin{aligned}
\frac{V_{1}}{T_{1}} & =\frac{V_{2}}{T_{2}} \\
V_{2} & =\frac{V_{1} T_{2}}{T_{1}} \\
& =\frac{(6.0 \mathrm{~L})\left(345 \cdot{ }_{15} \mathrm{~K}\right)}{248 \cdot{ }_{15} \mathrm{~K}} \\
\mathrm{~V}_{2} & =8.3 \mathrm{~L}
\end{aligned}
$$

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$. Determine the new pressure of the gas.

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$. Determine the new pressure of the gas.
Start by collecting the information we know:

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$. Determine the new pressure of the gas.
Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{P}_{1}=2.00 \mathrm{~atm} & \mathrm{P}_{2}=? \\
\mathrm{~V}_{1}=35.0 \mathrm{~L} & \mathrm{~V}_{2}=70.0 \mathrm{~L} \\
\mathrm{~T}_{1}=25^{\circ} \mathrm{C}=298 .{ }_{.15} \mathrm{~K} & \mathrm{~T}_{2}=50.0^{\circ} \mathrm{C}=323.1_{5} \mathrm{~K}
\end{array}
$$

$$
\text { Only } \mathrm{n} \text { is constant. }
$$

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$. Determine the new pressure of the gas.
Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{P}_{1}=2.00 \mathrm{~atm} & \mathrm{P}_{2}=? \\
\mathrm{~V}_{1}=35.0 \mathrm{~L} & \mathrm{~V}_{2}=70.0 \mathrm{~L} \\
\mathrm{~T}_{1}=25^{\circ} \mathrm{C}=298 .{ }^{\circ} \mathrm{K} & \mathrm{~T}_{2}=50.0^{\circ} \mathrm{C}=323.1_{5} \mathrm{~K}
\end{array}
$$

Set up the gas law and solve for final pressure $\left(\mathrm{P}_{2}\right)$:

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$. Determine the new pressure of the gas.
Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{P}_{1}=2.00 \mathrm{~atm} & \mathrm{P}_{2}=? \\
\mathrm{~V}_{1}=35.0 \mathrm{~L} & \mathrm{~V}_{2}=70.0 \mathrm{~L} \\
\mathrm{~T}_{1}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K} & \mathrm{~T}_{2}=50.0^{\circ} \mathrm{C}=323.1_{5} \mathrm{~K}
\end{array}
$$

Only n is constant.

Set up the gas law and solve for final pressure $\left(\mathrm{P}_{2}\right)$:

$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \\
P_{2} & =\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}}
\end{aligned}
$$

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You

 transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$. Determine the new pressure of the gas.Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{P}_{1}=2.00 \mathrm{~atm} & \mathrm{P}_{2}=? \\
\mathrm{~V}_{1}=35.0 \mathrm{~L} & \mathrm{~V}_{2}=70.0 \mathrm{~L} \\
\mathrm{~T}_{1}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K} & \mathrm{~T}_{2}=50.0^{\circ} \mathrm{C}=323.1_{5} \mathrm{~K}
\end{array}
$$

Only n is constant.

Set up the gas law and solve for final pressure $\left(\mathrm{P}_{2}\right)$:

$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \\
P_{2} & =\frac{P_{1} V_{1} T_{2}}{T_{1} V_{2}} \\
& =\frac{(2.00 \mathrm{~atm})(35.0 \mathrm{~L})\left(323.1_{5} \mathrm{~K}\right)}{(298.15 \mathrm{~K})(70.0 \mathrm{~L})}
\end{aligned}
$$

Consider a sample of gas at 2.00 atm in a 35.0 L container at $25^{\circ} \mathrm{C}$. You

 transfer all of the gas to a 70.0 L container and you heat the gas to $50.0^{\circ} \mathrm{C}$. Determine the new pressure of the gas.Start by collecting the information we know:

$$
\begin{array}{ll}
\mathrm{P}_{1}=2.00 \mathrm{~atm} & \mathrm{P}_{2}=? \\
\mathrm{~V}_{1}=35.0 \mathrm{~L} & \mathrm{~V}_{2}=70.0 \mathrm{~L} \\
\mathrm{~T}_{1}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K} & \mathrm{~T}_{2}=50.0^{\circ} \mathrm{C}=323.1_{5} \mathrm{~K}
\end{array}
$$

Only n is constant.

Set up the gas law and solve for final pressure $\left(\mathrm{P}_{2}\right)$:

$$
\begin{aligned}
\frac{\mathrm{P}_{1} V_{1}}{\mathrm{~T}_{1}} & =\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
\mathrm{P}_{2} & =\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1} \mathrm{~V}_{2}} \\
& =\frac{(2.00 \mathrm{~atm})(35.0 \mathrm{~L})\left(323.1_{5} \mathrm{~K}\right)}{\left(298 .{ }_{15} \mathrm{~K}\right)(70.0 \mathrm{~L})} \\
\mathrm{P}_{2} & =1.08 \mathrm{~atm}
\end{aligned}
$$

