LE CHATELIER'S PRINCIPLE \& REACTION QUOTIENTS (Q)

Am I at equilibrium or not?

Consider, again, the decomposition of ammonia gas into nitrogen gas and hydrogen gas.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

How can I know if my system, at a given time (t), is actually at equilibrium or not?

One way would be to plot the concentrations vs. time (plot shown). The system will be equilibrium if the concentrations are constant over time.

Am I at equilibrium or not?

Consider, again, the decomposition of ammonia gas into nitrogen gas and hydrogen gas.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

How can I know if my system, at a given time (t), is actually at equilibrium or not?

One way would be to plot the concentrations vs. time (plot shown). The system will be equilibrium if the concentrations are constant over time.

A second way is to plot the forward and reverse rates, which should become equal at equilibrium.

Am I at equilibrium or not?

Consider, again, the decomposition of ammonia gas into nitrogen gas and hydrogen gas.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

How can I know if my system, at a given time (t), is actually at equilibrium or not?

One way would be to plot the concentrations vs. time (plot shown). The system will be equilibrium if the concentrations are constant over time.

A second way is to plot the forward and reverse rates, which should become equal at equilibrium.

A better way is calculate a reaction quotient (Q), which has the same form as the K_{c} value.

$$
\mathrm{Q}=\frac{\left[\mathrm{N}_{2}\right]_{t}\left[\mathrm{H}_{2}\right]_{t}^{3}}{\left[\mathrm{NH}_{3}\right]_{t}^{2}}
$$

The system will be at equilibrium if:

$$
\underline{Q}=K_{\mathrm{c}}
$$

What if my $\mathbf{Q} \neq \boldsymbol{K}$?

Systems have a natural tendency to go toward equilibrium, where $\mathrm{Q}=\mathrm{K}$.

So, if $\mathrm{Q} \neq K$, the system will undergo some change to reach equilibrium.

$$
\mathrm{Q}=\frac{\left[\mathrm{N}_{2}\right]_{t}\left[\mathrm{H}_{2}\right]_{t}^{3}}{\left[\mathrm{NH}_{3}\right]_{t}^{2}}
$$

Consider the following graphical representation:
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

(at equilibrium)

What if my $\mathbf{Q} \neq \boldsymbol{K}$?

Systems have a natural tendency to go toward equilibrium, where $\mathrm{Q}=\mathrm{K}$.

So, if $\mathrm{Q} \neq K$, the system will undergo some change to reach equilibrium.

$$
\mathrm{Q}=\frac{\left[\mathrm{N}_{2}\right]_{t}\left[\mathrm{H}_{2}\right]_{t}^{3}}{\left[\mathrm{NH}_{3}\right]_{t}^{2}}
$$

Consider the following graphical representation:

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

- If $Q>K$, then the amount of products is greater than reactants, so our system will shift toward the left to use up N_{2} and H_{2} and make more NH_{3}.
- If $\mathrm{Q}<\mathrm{K}$, then the amount of reactants is greater than products, so our system will shift toward the right to use up NH_{3} and make more N_{2} and H_{2}.

PRACTICE PROBLEM

Given below are the initial concentrations of reactants and products for three experiments involving the reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.64
$$

Determine in which direction the reaction will proceed to reach equilibrium in each of the experiments.

- anszer -

First, write the expression for the reaction quotient:

$$
\mathrm{Q}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

For each experiment, calculate the reaction quotient (Q), and compare to K_{c} to determine the shift in the reaction.

	Experiment 1	Experiment 2
$[\mathrm{CO}]_{0}$	0.0203 M	0.011 M
$\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}$	0.0203 M	0.0011 M
$\left[\mathrm{CO}_{2}\right]_{0}$	0.0040 M	0.037 M
$\left[\mathrm{H}_{2}\right]_{0}$	0.0040 M	0.046 M
		0.0094 M
$\mathrm{Q}_{1}=\frac{(0.0040)(0.0040)}{(0.0203)(0.0203)}$	$\mathrm{Q}_{2}=\frac{(0.037)(0.046)}{(0.011)(0.0011)}$	$\mathrm{Q}_{3}=\frac{(0.0015)(0.0076)}{(0.0094)(0.0025)}$
$\mathrm{Q}_{1}=0.039$	$\mathrm{Q}_{2}=1.4 \times 10^{2}$	$\mathrm{Q}_{3}=0.48$
		$\mathrm{Q}_{1}>\mathrm{K}_{\mathrm{c}}$
$\mathrm{Q}_{1}<\mathrm{K}_{\mathrm{c}}$	(shift left)	$\mathrm{Q}_{3}<\mathrm{K}_{\mathrm{c}}$
(shift right)	(shift right)	

Le Chatelier's Principle

Chemical systems will tend toward equilibrium $(\mathrm{Q}=\mathrm{K})$ in response to any stress placed upon the system.
We've already seen how concentrations can affect the shift in reaction directions, but what about other effects?

$$
\text { Consider the gaseous equilibrium: } \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{Q}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \quad \text { or } \quad \mathrm{Q}_{\mathrm{p}}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}
$$

	Change
Concentration	Increase $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
	Increase $\left[\mathrm{NO}_{2}\right]$
	Decrease $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
	Decrease $\left[\mathrm{NO}_{2}\right]$

Q initial
 Shift

$Q<K \quad$ right
Q > K left
$Q>K \quad$ left
$\mathrm{Q}<\mathrm{K} \quad$ right
$Q>K$
$Q<K$
left (to side with less moles of gas)
right (to side with more moles of gas)
$\mathrm{Q}<\mathrm{K}$
$Q>K$
right (to side with more moles of gas) left (to side with less moles of gas)

Temperature effects

Le Chatelier's principle tells us that when we introduce a change/stress into our system that changes our reaction quotient (Q), the system/reaction will shift left or right to establish equilibrium $(\mathrm{Q}=\mathrm{K})$.

The effect of temperature actually changes the value of K itself. But we can still apply Le Chatelier's principle to predict the direction of the change.

Exothermic reactions

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta H=-9.4 \mathrm{~kJ}
$$

Endothermic reactions
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta H=+57.2 \mathrm{~kJ}$

For exothermic reactions, we can treat the heat released like a product:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})+\text { heat }
$$

- If we increase heat, the reaction shifts left since
$Q>K$ because K decreases.
- If we decrease heat, the reaction shifts right since
$Q<K$ because K increases.

Temperature effects

Le Chatelier's principle tells us that when we introduce a change/stress into our system that changes our reaction quotient (Q), the system/reaction will shift left or right to establish equilibrium $(\mathrm{Q}=\mathrm{K})$.

The effect of temperature actually changes the value of K itself. But we can still apply Le Chatelier's principle to predict the direction of the change.

Exothermic reactions

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta H=-9.4 \mathrm{~kJ}
$$

For exothermic reactions, we can treat the heat released like a product:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})+\text { heat }
$$

- If we increase heat, the reaction shifts left since
$Q>K$ because K decreases.
- If we decrease heat, the reaction shifts right since
$Q<K$ because K increases.

Endothermic reactions

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+57.2 \mathrm{~kJ}
$$

For endothermic reactions, we can treat the heat absorbed like a reactant:

$$
\text { heat }+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

- If we increase heat, the reaction shifts right since $Q<K$ because K increases.
- If we decrease heat, the reaction shifts left since $Q>K$ because K decreases.

