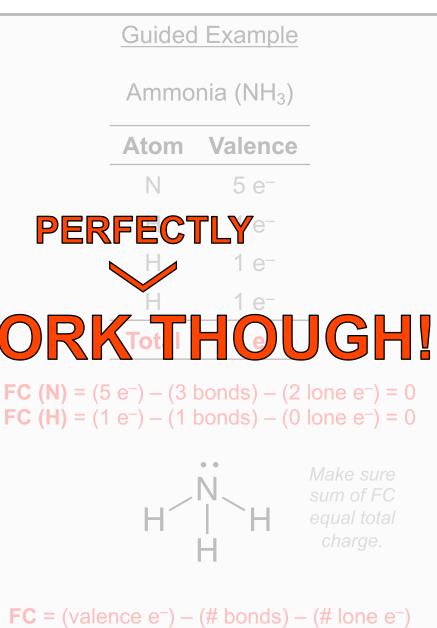

Lewis Structures: Exceptions

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2019

www.mioy.org/chem161

LEWIS STRUCTURES "RULES"

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equals total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.



LEWIS STRUCTURES "RULES"

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

3. Draw single bonds ("skeleton"). THIS DOESN'T ALWAYS WORKTOTHOUGH! each) by adding lone pairs (sets of 2 electrons). FC (N) = (5 e⁻) - (3 bonds) - (2 lone e⁻) = 0

- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equals total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

CHEMISTRY 161 – FALL 2019

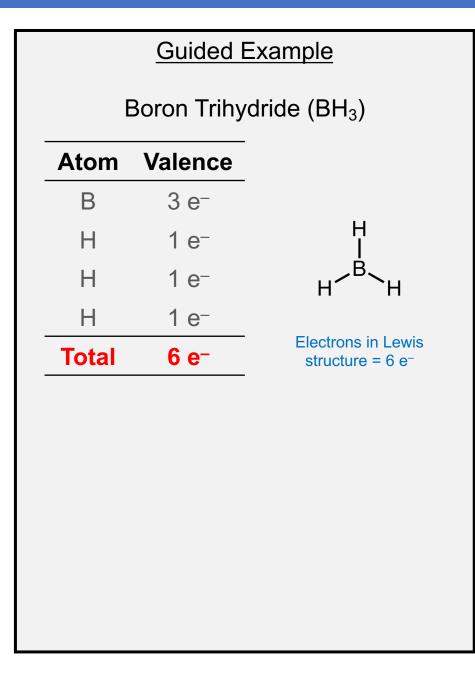
EXCEPTION 1: LESS THAN OCTET (B & Be)

Guided Example

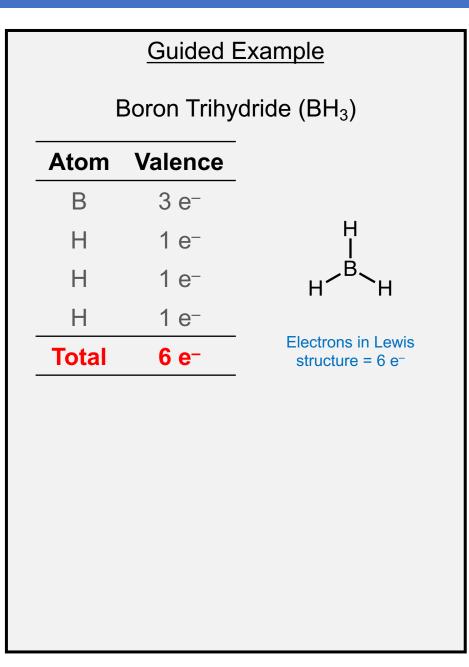
Boron Trihydride (BH₃)

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

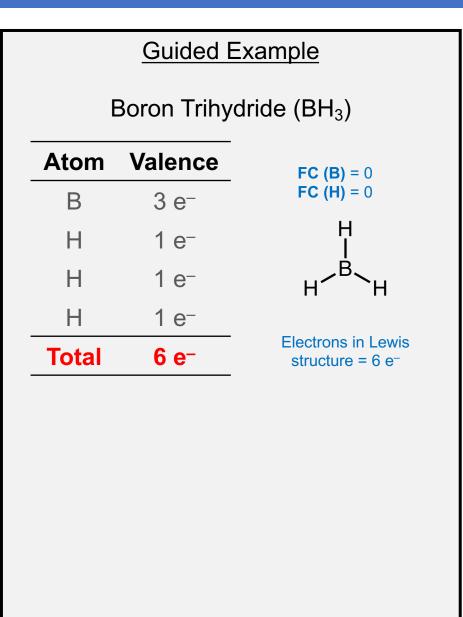
- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

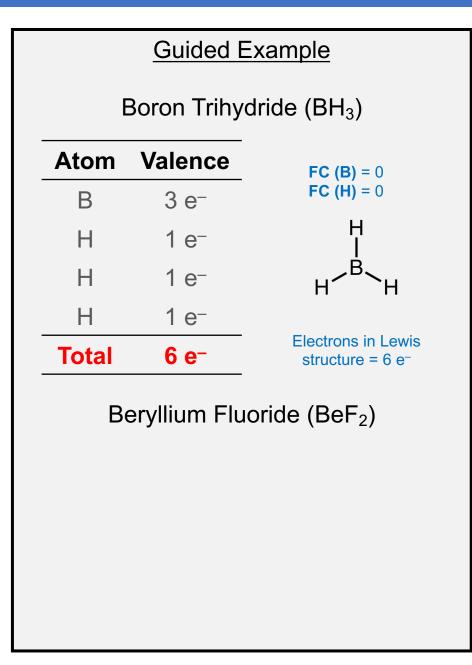

Guided Example				
E	Boron Trihy	vdride (B⊦	┨ ₃)	
Atom	Valence			
В	3 e-			
Н	1 e-		Н	
Н	1 e-	н	B H	
Н	1 e-			
Total	6 e-			

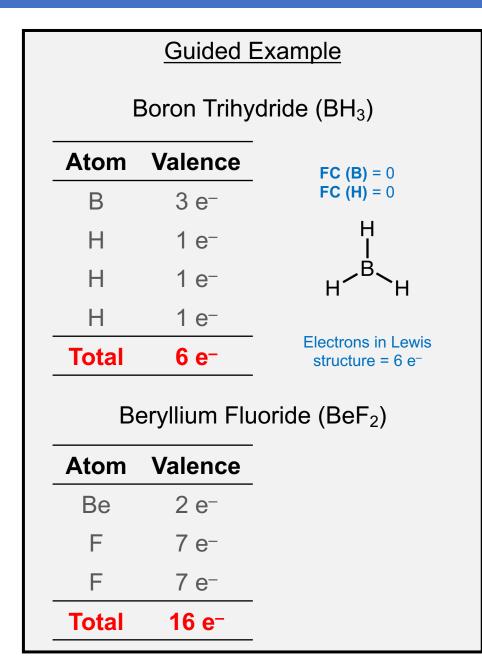
- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet.

Guided Example		
Boron Trihydride (BH ₃)		
Atom	Valence	-
В	3 e-	-
Н	1 e-	H
Н	1 e-	H ^B H
Н	1 e-	
Total	6 e-	-


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet.
- 5. Count electrons in Lewis structure.


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

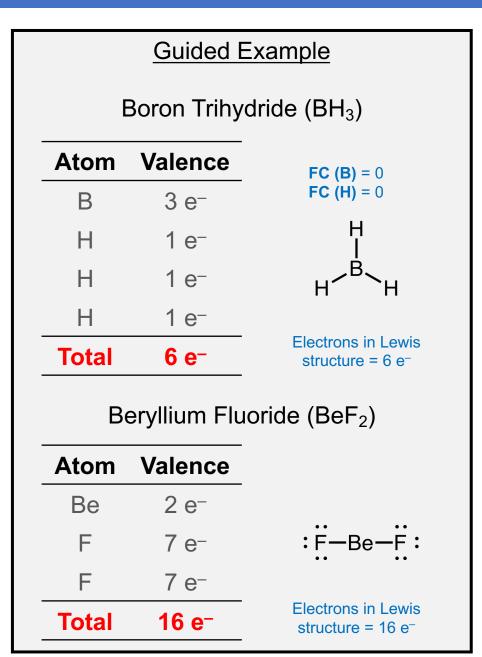
1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

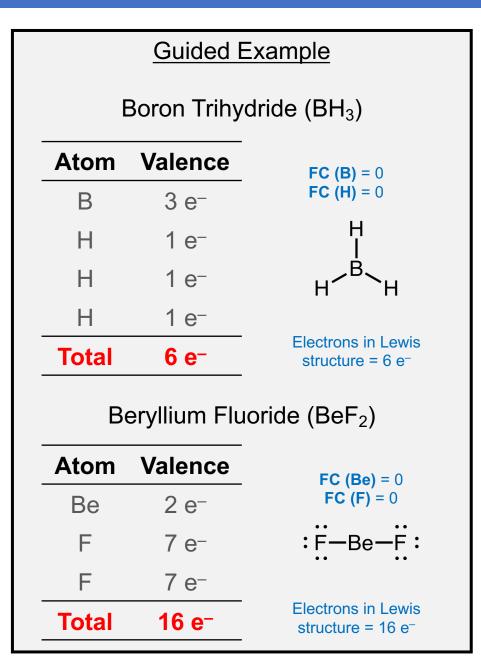
<u>Guided</u> Boron Trihy	Example	
Boron Trihy	(drido (RU)	
Valence	FC (B) = 0	
3 e-	FC (H) = 0	
1 e-	H	
1 e-	н∕ ^В ∕н	
1 e-		
6 e⁻	Electrons in Lewis structure = 6 e ⁻	
Beryllium Fluoride (BeF ₂)		
Valence		
2 e-		
7 e-	F Be F	
7 e-	_	
	3 e ⁻ 1 e ⁻ 1 e ⁻ 1 e ⁻ 6 e ⁻ eryllium Flu Valence 2 e ⁻	

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").

Guided Example			
Boron Trihydride (BH ₃)			
Atom	Valence	FC (B) = 0	
В	3 e-	FC (H) = 0	
Н	1 e-	H	
Н	1 e-	ҥ∕ [₿] ҇н	
Н	1 e-		
Total	6 e-	Electrons in Lewis structure = 6 e ⁻	
B	eryllium Flu	uoride (BeF ₂)	
Atom	Valence		
Be	2 e-		
F	7 e-	F—Be—F	
F	7 e-		
Total	16 e [_]		


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet. Be only needs 4 electrons instead of an octet.

Guided Example			
Paran Tribudrida (PU)			
Boron Trihydride (BH ₃)			
Atom	Valence	FC (B) = 0	
В	3 e-	FC (H) = 0	
Н	1 e-	H	
Н	1 e-	н∕ [₿] ∕н	
Н	1 e-		
Total	6 e-	Electrons in Lewis structure = 6 e ⁻	
Be	eryllium Flu	uoride (BeF ₂)	
Atom	Valence		
Be	2 e-		
F	7 e-	:F—Be—F:	
F	7 e-		
Total	16 e⁻		


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet. Be only needs 4 electrons instead of an octet.
- 5. Count electrons in Lewis structure.

Guided Example		
Boron Trihydride (BH ₃)		
Atom	Valence	FC (B) = 0
В	3 e-	FC (H) = 0
Н	1 e-	H
Н	1 e-	ӈ╱ [₿] ╲ӈ
Н	1 e-	
Total	6 e⁻	Electrons in Lewis structure = 6 e ⁻
B	eryllium Flu	uoride (BeF ₂)
Atom	Valence	
Be	2 e-	
F	7 e-	:F-Be-F:
F	7 e-	
Total	16 e⁻	Electrons in Lewis structure = 16 e ⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet. Be only needs 4 electrons instead of an octet.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. B only needs 6 electrons instead of an octet. Be only needs 4 electrons instead of an octet.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

CHEMISTRY 161 – FALL 2019

EXCEPTION 2: MORE THAN OCTET ($n \ge 3$)

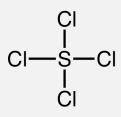
Guided Example

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Atom	Valence
S	6 e-
CI	7 e-
Total	34 e⁻

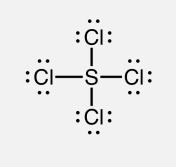
- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).


Guided Example

Atom	Valence
S	6 e-
CI	7 e-
Total	34 e⁻
CI	CI S CI CI

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").

Guided Example


Atom	Valence
S	6 e-
CI	7 e-
Total	34 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule.

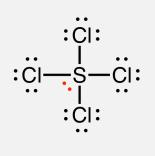
Guided Example

Atom	Valence
S	6 e-
CI	7 e-
Total	34 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule.
- 5. Count electrons in Lewis structure.

Guided Example

Sulfur Tetrachloride (SCl₄)

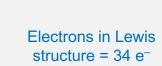

Atom Valence S 6 e ⁻ Cl 7 e ⁻ Cl 7 e ⁻
CI 7 e-
Cl 7 e ⁻
CI 7 e-
CI 7 e-
Total 34 e ⁻

Electrons in Lewis structure = 32 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- →4. Fulfill octet rule. If central atom is in third row or below ($n \ge 3$), it can have more than 8 electrons.
- -5. Count electrons in Lewis structure.

Guided Example

Atom	Valence
S	6 e-
CI	7 e-
Total	34 e⁻


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule. If central atom is in third row or below $(n \ge 3)$, it can have more than 8 electrons.
- 5. Count electrons in Lewis structure.

Guided Example

Sulfur Tetrachloride (SCl₄)

S 6 e ⁻ CI 7 e ⁻ CI 7 e ⁻ CI 7 e ⁻ CI 7 e ⁻
CI 7 e ⁻
Cl 7 e-
CI 7 e-
Total 34 e⁻

:CI:

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule. If central atom is in third row or below ($n \ge 3$), it can have more than 8 electrons.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

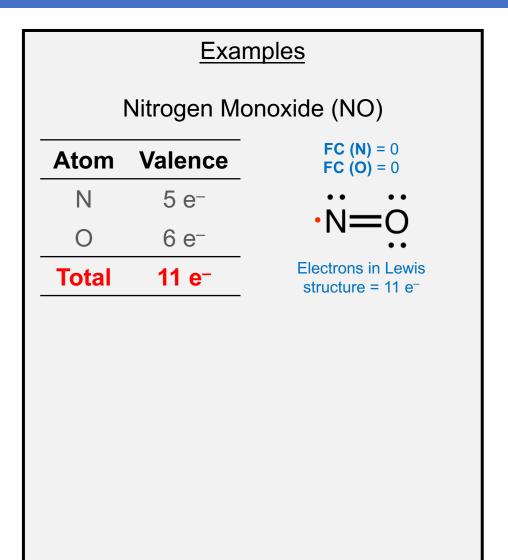
Guided Example

Sulfur Tetrachloride (SCl₄)

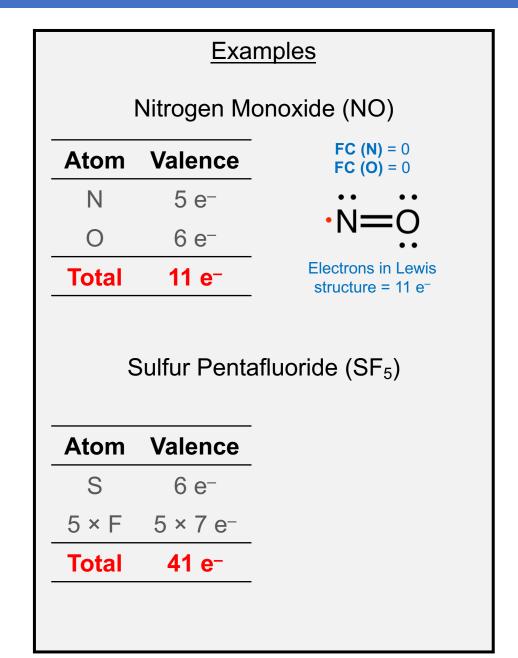
Atom	Valence
S	6 e-
CI	7 e-
Total	34 e⁻
: 	: - - - S - C I:

Electrons in Lewis structure = 34 e⁻

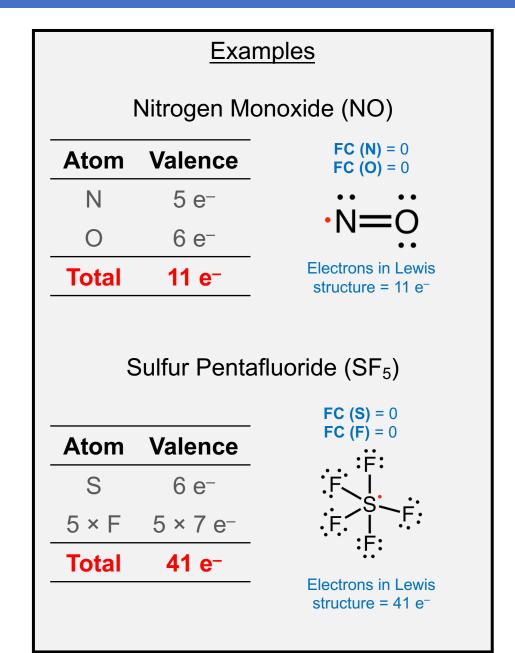
- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule. If central atom is in third row or below ($n \ge 3$), it can have more than 8 electrons.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.


Guided Example

-	Atom	Valence	-
	S	6 e-	
	CI	7 e-	_
_	Total	34 e⁻	_
	:ĊI—	:CI: I S-CI: I I	FC (S) = 0 FC (CI) = 0
			ns in Lewis ıre = 34 e⁻


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill the octet for most atoms. Place odd electrons to minimize formal charges.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

	Examples			
I	Nitrogen M	onoxide (NO)		
Atom	Valence			
Ν	5 e-			
0	6 e-			
Total	11 e⁻			


- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill the octet for most atoms. Place odd electrons to minimize formal charges.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill the octet for most atoms. Place odd electrons to minimize formal charges.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill the octet for most atoms. Place odd electrons to minimize formal charges.
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

