Lewis Structures

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

Guided Example
Ammonia $\left(\mathrm{NH}_{3}\right)$

Guided Example
Ammonia $\left(\mathrm{NH}_{3}\right)$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$

Atom Valence

N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

ELECTRONEGATIVITY

The ability for an atom to attract electrons to itself.

Same trend as ionization energy (IE)!
EN decreases down a column. EN increases across a row.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

5. Count electrons in Lewis structure.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equals total number of valence electrons, then done.

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equals total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$	
Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

FC = (valence e-) - (\# bonds) - (\# lone e^{-})

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equals total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Ammonia $\left(\mathrm{NH}_{3}\right)$

Atom	Valence
N	$5 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
H	$1 \mathrm{e}^{-}$
Total	$8 \mathrm{e}^{-}$

FC $(\mathbf{N})=\left(5 e^{-}\right)-(3$ bonds $)-\left(2\right.$ lone $\left.e^{-}\right)=0$
FC $(H)=\left(1 e^{-}\right)-(1$ bonds $)-\left(0\right.$ lone $\left.e^{-}\right)=0$

Make sure
sum of FC
equal total
charge.

FC $=\left(\right.$ valence $\left.\mathrm{e}^{-}\right)-(\#$ bonds $)-\left(\#\right.$ lone $\left.\mathrm{e}^{-}\right)$

LEWIS STRUCTURES "RULES"

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Carbon Monoxide (CO)

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Carbon Monoxide (CO)

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Carbon Monoxide (CO)

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

Guided Example

Carbon Monoxide (CO)

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure do not equal total number of valence electrons, try double bond.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure do not equal total number of valence electrons, try double bond.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure do not equal total number of valence electrons, try double bond.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

1 lone pair = $2 e$

1 double bond = $4 \mathrm{e}^{-}$

Electrons in
Lewis structure $=12 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure still do not equal total number of valence electrons, try triple bond.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure still do not equal total number of valence electrons, try triple bond.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure still do not equal total number of valence electrons, try triple bond.

Guided Example

Carbon Monoxide (CO)

1 lone pair $=2 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Carbon Monoxide (CO)

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

$: \mathrm{C} \equiv \mathrm{O}: \begin{gathered}\text { sum of } \mathrm{FC} \\ \text { equal total } \\ \text { charge. }\end{gathered}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

FC (C) $=\left(4 \mathrm{e}^{-}\right)-(3$ bonds $)-\left(2\right.$ lone $\left.\mathrm{e}^{-}\right)=-1$
FC $(\mathbf{O})=\left(6 e^{-}\right)-(3$ bonds $)-\left(2\right.$ lone $\left.e^{-}\right)=+1$
Make sure
$: \mathrm{C} \equiv \mathrm{O}: \begin{gathered}\text { sum of } F C \\ \text { equal total } \\ \text { charge. }\end{gathered}$

FC = (valence $\left.\mathrm{e}^{-}\right)$- (\# bonds) - (\# lone e^{-})

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around
each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
C	$4 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

\square

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$\mathbf{1 8} \mathrm{e}^{-}$

O S O

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$18 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$\mathbf{1 8} \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure do not equal total number of valence electrons, try double bond.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$18 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$\mathbf{1 8} \mathrm{e}^{-}$

6. If electrons in Lewis structure do not equal total number of valence electrons, try double bond.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure do not equal total number of valence electrons, try double bond.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$\mathbf{1 8} \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$\mathbf{1 8} \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$18 \mathrm{e}^{-}$

But we arbitrarily chose the left O to be double-bonded...
We could've also chosen the right O.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$18 \mathrm{e}^{-}$

RESONANCE: multiple valid Lewis structures

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$18 \mathrm{e}^{-}$

RESONANCE: multiple valid Lewis structures

The real structure is an average of the multiple resonance structures.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$18 \mathrm{e}^{-}$

FC (S) $=\left(6 \mathrm{e}^{-}\right)-(3$ bonds $)-\left(2\right.$ lone $\left.\mathrm{e}^{-}\right)=+1$
FC (O) $=\left(6 \mathrm{e}^{-}\right)-(2$ bonds $)-\left(4\right.$ lone $\left.\mathrm{e}^{-}\right)=0$
$\mathrm{FC}(\mathrm{O})=\left(6 \mathrm{e}^{-}\right)-(1$ bonds $)-\left(6\right.$ lone $\left.\mathrm{e}^{-}\right)=-1$

RESONANCE: multiple valid Lewis structures
The real structure is an average of the multiple resonance structures.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$

Atom	Valence
S	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
O	$6 \mathrm{e}^{-}$
Total	$\mathbf{1 8} \mathrm{e}^{-}$

RESONANCE: multiple valid Lewis structures
The real structure is an average of the multiple resonance structures.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Cyanide (CN-)

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Cyanide $\left(\mathrm{CN}^{-}\right)$	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}-$
charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure do not equal total number of valence electrons, try double bond.

Guided Example

Cyanide $\left(\mathrm{CN}^{-}\right)$	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}^{-}$
charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

Electrons in
Lewis structure $=14 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.

Guided Example

Cyanide $\left(\mathrm{CN}^{-}\right)$	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}-$
charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure do not equal total number of valence electrons, try triple bond.

Guided Example

Cyanide (CN-)	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}-$
Charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

Electrons in Lewis structure

$$
=12 \mathrm{e}^{-}
$$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure
6. If electrons in Lewis structure do not equal total number of valence electrons, try triple bond.

Guided Example

Cyanide $\left(\mathrm{CN}^{-}\right)$	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}-$
charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

: C 三N:

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Cyanide (CN-)	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}-$
Charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

Electrons in Lewis structure
$=10 \mathrm{e}^{-}$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Cyanide $\left(\mathrm{CN}^{-}\right)$	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}^{-}$
charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

$$
\begin{array}{r}
\mathrm{FC}(\mathrm{C})=\left(4 \mathrm{e}^{-}\right)-(3 \text { bonds })-\left(2 \text { lone } \mathrm{e}^{-}\right)=-1 \\
\mathrm{FC}(\mathrm{~N})=\left(5 \mathrm{e}^{-}\right)-(3 \text { bonds })-\left(2 \text { lone } \mathrm{e}^{-}\right)=0 \\
: \mathrm{C} \equiv \mathrm{~N}: \begin{array}{c}
\text { Make sure } \\
\text { sum of } F C \\
\text { equals total } \\
\text { charge. }
\end{array}
\end{array}
$$

$$
\text { FC = (valence e- } \left.) \text { - (\# bonds) - (\# lone e }{ }^{-}\right)
$$

LEWIS STRUCTURES "RULES"

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
2. The least electronegative atom is usually the central atom (never Hydrogen though).
3. Draw single bonds ("skeleton").
4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
5. Count electrons in Lewis structure.
6. If electrons in Lewis structure equal total number of valence electrons, then done.
7. Assign formal charges (FC) on each atom.

Guided Example

Cyanide $\left(\mathrm{CN}^{-}\right)$	
Atom	Valence
C	$4 \mathrm{e}^{-}$
N	$5 \mathrm{e}-$
charge	$1 \mathrm{e}^{-}$
Total	$10 \mathrm{e}^{-}$

Generally, it's best to put negative formal charges on more EN atoms and positive formal charges on less EN atoms.

But you can't do that in this example.

