Lewis Structures

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2019

www.mioy.org/chem161

Np Pu Am Cm Bk

Cf

Es

Fm Md No Lr

Pa

Th

U

Np Pu Am Cm Bk

Cf

Es

Fm Md No Lr

Pa

Th

U

1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶

Pa

Th

U

Es Fm Md No Lr

Np Pu Am Cm Bk Cf

1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶

Pa

Th

U

Es Fm Md No Lr

Np Pu Am Cm Bk Cf

U

Th

Pa

Np Pu Am Cm Bk Cf Es Fm Md No Lr

U

Th

Pa

Np Pu Am Cm Bk Cf Es Fm Md No Lr

 \rightarrow 8 valence e⁻

Guided Example

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e−

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e-

Dr. Mioy T. Huynh

ELECTRONEGATIVITY

The ability for an atom to attract electrons to itself.

Same trend as ionization energy (IE)!

EN <u>decreases</u> down a column. EN <u>increases</u> across a row.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Ammonia (NH₃)

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e−

Ν

Η

Η

Η

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e−

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e−

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e-

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e-

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e−

- The total number of electrons in the Lewis structure 1. must equal the total number of valence electrons.
- The *least* electronegative atom is usually the 2. central atom (never Hydrogen though).
- Draw single bonds ("skeleton"). 3.
- Fulfill octet rule for each atom (8 electrons around 4. each) by adding lone pairs (sets of 2 electrons).
- Count electrons in Lewis structure. 5.

<u>Guided Example</u>

Ammonia (NH₃)

	Atom	Valence
	Ν	5 e-
	Н	1 e-
	Н	1 e-
	Н	1 e-
	Total	8 e⁻
1 lone pair = 2 e ⁻ H H H H		
1 single bo	ond = 2	e-

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.

Guided Example Ammonia (NH₃) Valence Atom Ν 5 e⁻ Н 1 e⁻ Н 1 e-Н 1 e-**Total** 8 e⁻ 1 lone pair = $2 e^{-}$ Electrons in Lewis structure = 8 e⁻ 1 single bond = $2 e^{-1}$

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equals total number of valence electrons, then done.

<u>Guided Example</u> Ammonia (NH₃) Valence Atom Ν 5 e⁻ Н 1 e⁻ Н 1 e-Н 1 e-**Total** 8 e⁻ 1 lone pair = 2 e⁻ Electrons in Lewis structure = 8 e⁻ 1 single bond = $2 e^{-1}$

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equals total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

Guided Example

Atom	Valence
Ν	5 e-
Н	1 e-
Н	1 e-
Н	1 e-
Total	8 e−

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equals total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

Guided Example

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Atom	Valence
С	4 e-
Ο	6 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Atom	Valence
С	4 e-
0	6 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Atom	Valence
С	4 e-
Ο	6 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.

Guided Example

Atom	Valence
С	4 e-
0	6 e-
Total	10 e⁻

Lewis

structure

 $= 14 e^{-}$

LEWIS STRUCTURES "RULES"

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try double bond.

<u>Guided Example</u> Carbon Monoxide (CO) Valence Atom С 4 e⁻ 6 e-Ο Total 10 e⁻ 1 lone pair = 2 e-**Electrons in**

1 single bond = $2 e^{-1}$

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- ★4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
 - 5. Count electrons in Lewis structure.
- -6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try double bond.

Guided Example

Atom	Valence
С	4 e-
0	6 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try double bond.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>still do not</u> equal total number of valence electrons, try <u>triple</u> bond.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- ★4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
 - 5. Count electrons in Lewis structure.
- -6. If electrons in Lewis structure <u>still do not</u> equal total number of valence electrons, try <u>triple</u> bond.

Guided Example

Atom	Valence
С	4 e-
Ο	6 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>still do not</u> equal total number of valence electrons, try <u>triple</u> bond.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
С	4 e-
0	6 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
С	4 e-
Ο	6 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
С	4 e-
Ο	6 e-
Total	10 e⁻

FC = (valence e^-) – (# bonds) – (# lone e^-)

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

Guided	Exam	ple

Carbon Monoxide (CO)

Atom	Valence
С	4 e-
Ο	6 e-
Total	10 e⁻

FC (C) =
$$(4 e^{-}) - (3 \text{ bonds}) - (2 \text{ lone } e^{-}) = -1$$

FC (O) = $(6 e^{-}) - (3 \text{ bonds}) - (2 \text{ lone } e^{-}) = +1$
 $\therefore C = O^{-} \qquad Make sure sum of FC equal total charge.$
FC = $(\text{valence } e^{-}) - (\# \text{ bonds}) - (\# \text{ lone } e^{-})$

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

Guided Example

Carbon Monoxide (CO)

Atom	Valence
С	4 e-
Ο	6 e-
Total	10 e⁻

Make sure sum of FC equal total charge.

FC = (valence e^-) – (# bonds) – (# lone e^-)

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Sulfur Dioxide (SO₂)

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Sulfur Dioxide (SO₂)

Atom	Valence
S	6 e-
0	6 e-
0	6 e-
Total	18 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Sulfur Dioxide (SO₂)

Atom	Valence
S	6 e-
0	6 e-
0	6 e-
Total	18 e⁻

O S O

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").

Guided Example

Sulfur Dioxide (SO₂)

Atom	Valence
S	6 e-
0	6 e-
0	6 e-
Total	18 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Sulfur Dioxide (SO₂)

Atom	Valence
S	6 e-
0	6 e-
0	6 e-
Total	18 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try <u>double</u> bond.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- ★4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
 - 5. Count electrons in Lewis structure.
- -6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try <u>double</u> bond.

Guided Example

Sulfur Dioxide (SO₂)

Atom	Valence
S	6 e-
0	6 e-
0	6 e-
Total	18 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try <u>double</u> bond.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided Example

Sulfur Dioxide (SO₂)

Atom	Valence
S	6 e-
0	6 e-
0	6 e-
Total	18 e⁻

Electrons in Lewis structure = 18 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

|--|

Sulfur Dioxide (SO₂)

Atom	Valence	
S	6 e-	
0	6 e-	
0	6 e-	
Total	18 e⁻	

But we arbitrarily chose the left O to be double-bonded... We could've also chosen the right O.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

<u>Guided Example</u> Sulfur Dioxide (SO₂) Atom Valence S 6 e⁻ 6 e⁻ \mathbf{O} 6 e- \mathbf{O} Total 18 e⁻

RESONANCE: multiple valid Lewis structures

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

Guided	Exam	ple

Sulfur Dioxide (SO₂)

Atom	Valence
S	6 e-
Ο	6 e-
Ο	6 e-
Total	18 e⁻

RESONANCE: multiple valid Lewis structures

The real structure is an <u>average</u> of the multiple resonance structures.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

Guided Example

Sulfur Dioxide (SO₂)

Atom	Valence		
S	6 e-		
0	6 e-		
0	6 e-		
Total	18 e⁻		

FC (S) = $(6 e^{-}) - (3 \text{ bonds}) - (2 \text{ lone } e^{-}) = +1$ FC (O) = $(6 e^{-}) - (2 \text{ bonds}) - (4 \text{ lone } e^{-}) = 0$ FC (O) = $(6 e^{-}) - (1 \text{ bonds}) - (6 \text{ lone } e^{-}) = -1$

••	••	•••	••	••	•••
O =	=S—	-0:	↔:0-	-S=	=O
• •		• •	••		• •

RESONANCE: multiple valid Lewis structures

The real structure is an <u>average</u> of the multiple resonance structures.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

RESONANCE: multiple valid Lewis structures

The real structure is an <u>average</u> of the multiple resonance structures.

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.

Guided Example

Atom	Valence
С	4 e-
Ν	5 e-
charge	1 e-
Total	10 e⁻

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).

Guided Example

Atom	Valence	
С	4 e-	
Ν	5 e-	
charge	1 e-	
Total	10 e⁻	

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).

Guided Example

Cyanide (CN⁻)

Atom	Valence	
С	4 e-	
Ν	5 e-	
charge	1 e-	
Total	10 e⁻	

: <u>C</u>—<u>N</u> :

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try <u>double</u> bond.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- ★4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
 - 5. Count electrons in Lewis structure.
- -6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try <u>double</u> bond.

Guided Example

Atom	Valence	
С	4 e-	
Ν	5 e-	
charge	1 e-	
Total	10 e⁻	

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try <u>triple</u> bond.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- ★4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
 - 5. Count electrons in Lewis structure.
 - -6. If electrons in Lewis structure <u>do not</u> equal total number of valence electrons, try <u>triple</u> bond.

Guided Example

Cyanide (CN⁻)

Atom	Valence	
С	4 e-	
Ν	5 e-	
charge	1 e-	
Total	10 e⁻	

 $: C \equiv N:$

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

	Cyani	de (CN⁻)	
		_	
	Atom	Valence	_
	С	4 e-	
	Ν	5 e-	
	charge	1 e-	
			—
· (C) - (A	Total	10 e -	-
	e⁻) – (3 b 5 e⁻) – (3 l	10 e - oonds) – (2 oonds) – (2 ≡N :	· · · · · · · · · · · · · · · · · · ·

- 1. The total number of electrons in the Lewis structure must equal the total number of valence electrons.
- 2. The *least* electronegative atom is usually the central atom (never Hydrogen though).
- 3. Draw single bonds ("skeleton").
- 4. Fulfill octet rule for each atom (8 electrons around each) by adding lone pairs (sets of 2 electrons).
- 5. Count electrons in Lewis structure.
- 6. If electrons in Lewis structure equal total number of valence electrons, then done.
- 7. Assign formal charges (FC) on *each* atom.

<u>Guided</u>	Exam	ple

Cyanide (CN⁻)

Atom	Valence
С	4 e-
Ν	5 e-
charge	1 e-
Total	10 e⁻

Generally, it's best to put negative formal charges on more EN atoms and positive formal charges on less EN atoms.

But you can't do that in this example.