Light as Waves

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

Waves of Energy

Energy $(E) \Leftrightarrow$ Wavelength $(\lambda) \Leftrightarrow$ Frequency (v)

Be able to convert between these three properties of waves.
$c=\lambda \mathrm{v}$

$$
\mathrm{E}=h \mathrm{v}=\frac{h c}{\lambda}
$$

Property		Value	Units
Energy	E		J
Wavelength	λ	nm	
Frequency	v		$\mathrm{s}^{-1}(\mathrm{or} \mathrm{Hz})$
Speed of light	c	2.998×10^{8}	$\mathrm{~m} / \mathrm{s}$
Planck's constant	h	6.626×10^{-34}	$\mathrm{~J} \cdot \mathrm{~s}$

LIGHT

Q: What is light?

Is it a wave that carries energy?
LIGHT AS A WAVE

Is it a stream of tiny packets of energy (called photons)?

LIGHT AS A STREAM OF PARTICLES/PHOTONS

A: It behaves as both a wave and a particle.
PHOTON: a quantized packet of light with a specific wavelength WAVE-PARTICLE DUALITY: light behaves as both a wave and a particle

Electromagnetic Spectrum

Shortest wavelength
Longest wavelength
(highest energy)

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$. What color would you expect this light to be?

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$. What color would you expect this light to be?

We can solve this problem using any of the three properties of light.
I'll show all three, which give the same answer.

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$.

 What color would you expect this light to be?We can solve this problem using any of the three properties of light.
I'll show all three, which give the same answer.

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$.

 What color would you expect this light to be?We can solve this problem using any of the three properties of light.
I'll show all three, which give the same answer.

$$
\mathrm{v}=4.87 \times 10^{14} \mathrm{~s}^{-1}
$$

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$. What color would you expect this light to be?

We can solve this problem using any of the three properties of light.
I'll show all three, which give the same answer.

ENERGY (E)

WAVELENGTH (λ)
FREQUENCY (v)
We can convert from frequency (v)
to wavelength (λ):

$$
\begin{aligned}
c & =\lambda v \\
\lambda & =\frac{2.998 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{4.87 \times 10^{14} \mathrm{~s}^{-1}} \\
& =6.16 \times 10^{-7} \mathrm{~m} \\
\lambda & =616 \mathrm{~nm}
\end{aligned}
$$

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$. What color would you expect this light to be?

We can solve this problem using any of the three properties of light.
I'll show all three, which give the same answer.

ENERGY (E)	WAVELENGTH (λ)	FREQUENCY (v)
We can convert from frequency (v) to energy (E):	We can convert from frequency (v) to wavelength (λ):	We can use the frequency (v) directly:
$\begin{aligned} \mathrm{E} & =h \mathrm{v} \\ & =\left(6.626 \times 10^{-31} \mathrm{~J} \cdot \mathrm{~s}\right)\left(4.87 \times 10^{14} \mathrm{~s}^{-1}\right) \\ \mathrm{E} & =3.23 \times 10^{-16} \mathrm{~J} \end{aligned}$	$\begin{aligned} c & =\lambda \mathrm{v} \\ \lambda & =\frac{2.998 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{4.87 \times 10^{14} \mathrm{~s}^{-1}} \\ & =6.16 \times 10^{-7} \mathrm{~m} \\ \lambda & =616 \mathrm{~nm} \end{aligned}$	$\mathrm{v}=4.87 \times 10^{14} \mathrm{~s}^{-1}$

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$. What color would you expect this light to be?

We can solve this problem using any of the three properties of light.
I'll show all three, which give the same answer.

ENERGY (E)	WAVELENGTH (λ)	FREQUENCY (v)
We can convert from frequency (v) to energy (E): $\begin{aligned} \mathrm{E} & =h \mathrm{v} \\ & =\left(6.626 \times 10^{-31} \mathrm{~J} \cdot \mathrm{~s}\right)\left(4.87 \times 10^{14} \mathrm{~s}^{-1}\right) \\ \mathrm{E} & =3.23 \times 10^{-16} \mathrm{~J} \end{aligned}$	We can convert from frequency (v) to wavelength (λ) : $\begin{aligned} c & =\lambda v \\ \lambda & =\frac{2.998 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{4.87 \times 11^{14} \mathrm{~s}^{-1}} \\ & =6.16 \times 10^{-7} \mathrm{~m} \\ \lambda & =616 \mathrm{~nm} \end{aligned}$	We can use the frequency (v) directly: $\mathrm{v}=4.87 \times 10^{14} \mathrm{~s}^{-1}$

We can use the wavelength or frequency and the electromagnetic spectrum to find out what color of light neon emits:

Neon (Ne) light has a frequency of $4.87 \times 10^{14} \mathrm{~Hz}$. What color would you expect this light to be?

We can solve this problem using any of the three properties of light.
I'll show all three, which give the same answer.

ENERGY (E)	WAVELENGTH (λ)	FREQUENCY (v)
We can convert from frequency (v) to energy (E):	We can convert from frequency (v) to wavelength (λ) :	We can use the frequency (v) directly:
$\begin{aligned} \mathrm{E} & =h v \\ & =\left(6.626 \times 10^{-31} \mathrm{~J} \cdot \mathrm{~s}\right)\left(4.87 \times 10^{14} \mathrm{~s}^{-1}\right) \\ \mathrm{E} & =3.23 \times 10^{-16} \mathrm{~J} \end{aligned}$	$\begin{aligned} c & =\lambda v \\ \lambda & =\frac{2.998 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{4.87 \times 10^{14} \mathrm{~s}^{-1}} \\ & =6.16 \times 10^{-7} \mathrm{~m} \\ \lambda & =616 \mathrm{~nm} \end{aligned}$	$\mathrm{v}=4.87 \times 10^{14} \mathrm{~s}^{-1}$

We can use the wavelength or frequency and the electromagnetic spectrum to find out what color of light neon emits: ORANGE.

