Stoichiometry Limiting Reactants

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2018

www.mioy.org/chem161

REMEMBER THIS?

THE MOLE IS CENTRAL

SUMMARIZING STOICHIOMETRY RELATIONSHIPS

THE MOLE IS STILL CENTRAL

I hope now you understand why I say to convert to moles before you do anything else. It's because a balanced chemical equation gives us mole-to-mole ratios that we can use to convert between one reactant/product to another reactant/product.

How do I read a chemical equation?

\(\left.$$
\begin{array}{c}\begin{array}{c}\text { COEFFICIENTS } \\
\text { Tell us the relative amounts } \\
\text { of reactants/products }\end{array}\end{array}
$$ \begin{array}{c}SUBSCRIPTS

Tell us the \# of atoms

in a molecule\end{array} \quad $$
\begin{array}{c}\text { PHASES }\end{array}
$$\right]\)| Tell us the nature of |
| :---: |
| reactants/products |

- Subscripts are not conserved!
- Coefficients have no real meaning by themselves...
- RATIO of coefficient is what's important.
- Read it like a recipe:
"For every $2 \mathrm{H}_{2}$ molecules, we need $1 \mathrm{O}_{2}$ molecule to produce $2 \mathrm{H}_{2} \mathrm{O}$ molecules."

WE HAVE NOT CONSIDERED CASES WHERE WE HAVE LIMITED AMOUNTS OF BOTH REACTANTS!

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?
B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?
C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?
C) If you have 8 moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H} 2 \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H} 2 \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

$$
2 \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \quad \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

A) If you have 8 moles of hydrogen and all the oxygen you need, how many moles of water can you make?

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

B) If you have 6 moles of oxygen and all the hydrogen you need, how many moles of water can you make?

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

C) If you have $\mathbf{8}$ moles of hydrogen and 6 moles of oxygen, how many moles of water can you make?

Okay, but I don't want to draw pictures every time... Can you explain differently?

$$
\underline{2} \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

METHOD 1

1. Assume one reactant is limiting and then determine amount of product you can form.

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

2. Assume other reactant is limiting and then determine amount of product you can form.

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

3. Reactant that limits amount of products formed is limiting reactant.
H_{2} produces less $\mathrm{H}_{2} \mathrm{O}$ so it is limiting.

Okay, but I don't want to draw pictures every time... Can you explain differently?

$$
\underline{2} \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{H}_{2} \mathrm{O}(g)
$$

METHOD 1

1. Assume one reactant is limiting and then determine amount of product you can form.

$$
8 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}=8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

2. Assume other reactant is limiting and then determine amount of product you can form.

$$
6 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}=12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

3. Reactant that limits amount of products formed is limiting reactant.
H_{2} produces less $\mathrm{H}_{2} \mathrm{O}$ so it is limiting.

METHOD 2

1. Start with one reactant and determine how much of the other reactant you need. $8 \mathrm{~mol} \mathrm{H} 2 \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2}}=4 \mathrm{~mol} \mathrm{O}_{2}$
2. Compare what you have vs. what you need:

Have: $6 \mathrm{~mol} \mathrm{O}_{2}$ Need: $4 \mathrm{~mol} \mathrm{O}_{2}$
3. We have more O_{2} than we need
$\rightarrow \mathrm{O}_{2}$ excess
$\rightarrow \mathrm{H}_{2}$ is limiting.

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{NH}_{3}(\mathrm{~g})
$$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} \quad 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2}
$$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
\begin{array}{cc}
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} & 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2} \\
\text { METHOD 1 } & \text { METHOD 2 }
\end{array}
$$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
\begin{array}{cc}
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} & 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2} \\
\text { METHOD 1 } & \text { METHOD 2 }
\end{array}
$$

1. Assume one reactant is limiting and then determine amount of product you can form.
$6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=12.0 \mathrm{~mol} \mathrm{NH}_{3}$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
\begin{array}{cc}
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} & 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2} \\
\text { METHOD 1 } & \text { METHOD 2 }
\end{array}
$$

1. Assume one reactant is limiting and then determine amount of product you can form.
$6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=12.0 \mathrm{~mol} \mathrm{NH}_{3}$
2. Assume other reactant is limiting and then determine amount of product you can form.
$6.00 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.00 \mathrm{~mol} \mathrm{NH}_{3}$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
\begin{array}{cc}
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} & 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2} \\
\text { METHOD 1 } & \text { METHOD 2 }
\end{array}
$$

1. Assume one reactant is limiting and then determine amount of product you can form.

$$
6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=12.0 \mathrm{~mol} \mathrm{NH}_{3}
$$

2. Assume other reactant is limiting and then determine amount of product you can form.
$6.00 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.00 \mathrm{~mol} \mathrm{NH}_{3}$
3. Reactant that limits amount of products formed is limiting reactant.
H_{2} produces less NH_{3} so it is limiting.

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
\begin{array}{rr}
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} & 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2} \\
\text { METHOD 1 } & \underline{\text { METHOD 2 }}
\end{array}
$$

1. Assume one reactant is limiting and then determine amount of product you can form.

$$
6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol}^{-\mathrm{NH}_{3}}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=12.0 \mathrm{~mol} \mathrm{NH}_{3}
$$

2. Assume other reactant is limiting and then determine amount of product you can form.
$6.00 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.00 \mathrm{~mol} \mathrm{NH}_{3}$
3. Reactant that limits amount of products formed is limiting reactant.
H_{2} produces less NH_{3} so it is limiting.
4. Start with one reactant and determine how much of the other reactant you need. $6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=18.0 \mathrm{~mol} \mathrm{H}_{2}$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} \quad 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2}
$$

METHOD 1

1. Assume one reactant is limiting and then determine amount of product you can form.

$$
6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{molNH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=12.0 \mathrm{~mol} \mathrm{NH}_{3}
$$

2. Assume other reactant is limiting and then determine amount of product you can form.
$6.00 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.00 \mathrm{~mol} \mathrm{NH}_{3}$
3. Reactant that limits amount of products formed is limiting reactant.
H_{2} produces less NH_{3} so it is limiting.

METHOD 2

1. Start with one reactant and determine how much of the other reactant you need. $6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=18.0 \mathrm{~mol} \mathrm{H}_{2}$
2. Compare what you have vs. what you need:

Have: $6.00 \mathrm{~mol} \mathrm{H}_{2}$
Need: $18.0 \mathrm{~mol} \mathrm{H}_{2}$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} \quad 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2}
$$

METHOD 1

1. Assume one reactant is limiting and then determine amount of product you can form.

$$
6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{molNH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=12.0 \mathrm{~mol} \mathrm{NH}_{3}
$$

2. Assume other reactant is limiting and then determine amount of product you can form.
$6.00 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.00 \mathrm{~mol} \mathrm{NH}_{3}$
3. Reactant that limits amount of products formed is limiting reactant.
H_{2} produces less NH_{3} so it is limiting.

METHOD 2

1. Start with one reactant and determine how much of the other reactant you need. $6.00 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=18.0 \mathrm{~mol} \mathrm{H}_{2}$
2. Compare what you have vs. what you need:

Have: $6.00 \mathrm{~mol} \mathrm{H}_{2}$
Need: $18.0 \mathrm{~mol} \mathrm{H}_{2}$
3. We have less H_{2} than we need
$\rightarrow \mathrm{H}_{2}$ is limiting.

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+\underline{3} \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} \quad 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2}
$$

After determining that H_{2} is the limiting reactant, then we can continue with the problem.

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{2} \mathrm{NH}_{3}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} \quad 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2}
$$

After determining that H_{2} is the limiting reactant, then we can continue with the problem.

Start with the limiting reactant and use mole-mole ratio to find mole of products:

$$
12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.000 \mathrm{~mol} \mathrm{NH}_{3}
$$

If we have $168.12 \mathrm{~g} \mathrm{~N}_{2}$ and $12.096 \mathrm{~g} \mathrm{H}_{2}$, how much NH_{3} can we make?

$$
1 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow \underline{N H_{3}}(g)
$$

REMEMBER: If you don't know where to start, convert to moles first!

$$
168.12 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}=6.00 \mathrm{~mol} \mathrm{~N}_{2} \quad 12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=6.00 \mathrm{~mol} \mathrm{H}_{2}
$$

After determining that H_{2} is the limiting reactant, then we can continue with the problem.

Start with the limiting reactant and use mole-mole ratio to find mole of products:

$$
12.096 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=4.000 \mathrm{~mol} \mathrm{NH}_{3}
$$

Now use molar mass of NH_{3} to convert from moles to mass of NH_{3} made:

$$
4.000 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{17.034 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=68.14 \mathrm{~g} \mathrm{NH}_{3}
$$

How do I know when I have a limiting reactant problem?

Only when you are given the amounts (mass, moles, volume) of BOTH reactants.

Pouring an aqueous solution of HCl onto a solid block of Mg metal produces an aqueous solution of $\mathbf{M g C l}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{2}}$ gas.

$$
1 \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 1 \mathrm{MgCl}_{2}(\mathrm{aq})+1 \mathrm{H}_{2}(g)
$$

How much H_{2} gas can be made if we start with 10.0 g Mg and 1.76 mol HCl ?

Pouring an aqueous solution of HCl onto a solid block of Mg metal produces an aqueous solution of $\mathbf{M g C l}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{2}}$ gas.

$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+\underline{1} \mathrm{H}_{2}(g)
$$

How much $\mathrm{H}_{\mathbf{2}}$ gas can be made if we start with $10.0 \mathrm{~g} \mathbf{~ M g}$ and 1.76 mol HCl ?

$$
10.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}=0.411 \mathrm{~mol} \mathrm{Mg} \quad 1.76 \mathrm{~mol} \mathrm{HCl}
$$

Pouring an aqueous solution of HCl onto a solid block of Mg metal produces an aqueous solution of $\mathbf{M g C l}_{2}$ and $\mathbf{H}_{\mathbf{2}}$ gas.

$$
1 \mathrm{Mg}(\mathrm{~s})+\underline{2} \mathrm{HCl}(a q) \rightarrow \underline{1} \mathrm{MgCl}_{2}(a q)+\underline{1} \mathrm{H}_{2}(g)
$$

How much $\mathrm{H}_{\mathbf{2}}$ gas can be made if we start with 10.0 g Mg and 1.76 mol HCl ?

$$
10.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}=0.411 \mathrm{~mol} \mathrm{Mg}
$$

$$
1.76 \mathrm{~mol} \mathrm{HCl}
$$

METHOD 1

1. Assume one reactant is limiting and then determine amount of product you can form.
$0.411 \mathrm{~mol} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Mg}}=0.411 \mathrm{~mol} \mathrm{H}_{2}$
2. Assume other reactant is limiting and then determine amount of product you can form.
$1.76 \mathrm{~mol} \mathrm{HCl} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{HCl}}=0.880 \mathrm{~mol} \mathrm{NH}_{3}$
3. Reactant that limits amount of products formed is limiting reactant.

Mg produces less H_{2} so it is limiting.

Pouring an aqueous solution of HCl onto a solid block of Mg metal produces an aqueous solution of $\mathbf{M g C l}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{2}}$ gas.

$$
1 \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \underline{1} \mathrm{MgCl}_{2}(\mathrm{aq})+\underline{1} \mathrm{H}_{2}(g)
$$

How much H_{2} gas can be made if we start with 10.0 g Mg and 1.76 mol HCl ?

$$
10.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}=0.411 \mathrm{~mol} \mathrm{Mg}
$$

1.76 mol HCl

METHOD 1

1. Assume one reactant is limiting and then determine amount of product you can form.
$0.411 \mathrm{~mol} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Mg}}=0.411 \mathrm{~mol} \mathrm{H}_{2}$
2. Assume other reactant is limiting and then determine amount of product you can form.
$1.76 \mathrm{~mol} \mathrm{HCl} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{HCl}}=0.880 \mathrm{~mol} \mathrm{NH}_{3}$
3. Reactant that limits amount of products formed is limiting reactant.

METHOD 2

1. Start with one reactant and determine how much of the other reactant you need. $0.411 \mathrm{~mol} \mathrm{Mg} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}}=0.822 \mathrm{~mol} \mathrm{HCl}$
2. Compare what you have vs. what you need:

Have: 1.76 mol HCl
Need: 0.822 mol HCl
3. We have more HCl than we need
$\rightarrow \mathbf{M g}$ is limiting.

Mg produces less H_{2} so it is limiting.

Pouring an aqueous solution of HCl onto a solid block of Mg metal produces an aqueous solution of $\mathbf{M g C l}_{2}$ and $\mathbf{H}_{\mathbf{2}}$ gas.

$$
1 \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 1 \mathrm{MgCl}_{2}(\mathrm{aq})+\underline{1} \mathrm{H}_{2}(g)
$$

How much H_{2} gas can be made if we start with 10.0 g Mg and 1.76 mol HCl ?

$$
10.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}=0.411 \mathrm{~mol} \mathrm{Mg} \quad 1.76 \mathrm{~mol} \mathrm{HCl}
$$

After determining that Mg is the limiting reactant, then we can continue with the problem.

Start with the limiting reactant and use mole-mole ratio to find mole of products:

$$
10.0 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Mg}}=0.411 \mathrm{~mol} \mathrm{H}_{2}
$$

Or use molar mass of H_{2} to convert from moles to mass of H_{2} made:

$$
0.411 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}=0.829 \mathrm{~g} \mathrm{H}_{2}
$$

