Mass Percent and Formulas

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2018

www.mioy.org/chem161

Introduction to mass percent

Imagine a single molecule of methane: CH₄

• Ask yourself: Does this molecule contain more hydrogen or more carbon?

• IT DEPENDS!

• Technically, 4 out of 5 atoms are hydrogen (80%), but....

Dr. Mioy Huynh

Introduction to mass percent

CHEMISTS CARE ABOUT MASS PERCENT!

% Mass = $\frac{\text{mass part}}{\text{mass whole}} \times 100\%$

How do I calculate the mass percentages for CH_4 ?

- Remember that the molar mass of CH_4 is 16.04 g/mol:
 - $1 \text{ mol CH}_4 = 1 \text{ mol C} + 4 \text{ mol H}$
 - = 1 (12.01 g) + 4 (1.008 g) = 16.04 g

How do I calculate the mass percentages for CH₄?

• Remember that the molar mass of CH_4 is 16.04 g/mol:

$$1 \mod CH_4$$
 = $1 \mod C$ + $4 \mod H$

$$= 1 (12.01 \text{ g}) + 4 (1.008 \text{ g}) = 16.04 \text{ g}$$

$$\frac{\text{Mass}}{\text{Mass}} = \frac{\text{mass part}}{\text{mass whole}} \times 100\%$$

$$\% \text{ C} \rightarrow \frac{1(12.01) \text{ g}}{16.04 \text{ g}} \times 100\% = 74.90\% \text{ C}$$

$$\% \text{ H} \rightarrow \frac{4(1.008) \text{ g}}{16.04 \text{ g}} \times 100\% = 25.10\% \text{ H}$$

$$100.0\% \text{ tota}$$

How do I calculate the mass percentages for $2 \mod CH_4$?

How do I calculate the mass percentages for 2 mol CH₄?

- The molar mass of CH_4 is 16.04 g/mol, but now:
 - 2 mol CH_4 = 2 mol C + 8 mol H
 - = 2(12.01 g) + 8(1.008 g) = 32.08 g

How do I calculate the mass percentages for 2 mol CH₄?

• The molar mass of CH_4 is 16.04 g/mol, but now:

$$2 \text{ mol CH}_4 = 2 \text{ mol C} + 8 \text{ mol H}$$

= 2(12.01 g) + 8(1.008 g) = 32.08 g

$$\frac{\text{Mass}}{\text{Mass}} = \frac{\text{mass part}}{\text{mass whole}} \times 100\%$$

$$\% \text{ C} \rightarrow \frac{2(12.01) \text{ g}}{32.08 \text{ g}} \times 100\% = 74.90\% \text{ C}$$

$$\% \text{ H} \rightarrow \frac{8(1.008) \text{ g}}{32.08 \text{ g}} \times 100\% = 25.10\% \text{ H}$$

$$100.0\% \text{ tota}$$

How do I calculate the mass percentages for 2 mol CH₄?

• The molar mass of CH_4 is 16.04 g/mol, but now:

$$2 \text{ mol CH}_4 = 2 \text{ mol C} + 8 \text{ mol H}$$

= 2(12.01 g) + 8(1.008 g) = 32.08 g

$$\% \text{ Mass} = \frac{\text{mass part}}{\text{mass whole}} \times 100\%$$
$$\% \text{ C} \rightarrow \frac{2(12.01) \text{ g}}{32.08 \text{ g}} \times 100\% = 74.90\% \text{ C}$$
$$\% \text{ H} \rightarrow \frac{8(1.008) \text{ g}}{32.08 \text{ g}} \times 100\% = 25.10\% \text{ H}$$
$$100.0\% \text{ total}$$

TAKE-HOME MESSAGE

Percent composition is <u>independent</u> of the starting amount!

This is why we usually *assume* we have 100 g or 1 mol. These are just super easy numbers to work with.

<u>Note</u>: If you wanted to use a strange amount, like 0.27 mol or 74.5 g of substance, your answers would be the same but the math isn't as convenient. BUT you'll still be right. ③

What is the mass percent of oxygen in each substance? H_2O_2 versus H_2O

What is the mass percent of oxygen in each substance? H_2O_2 versus H_2O

H₂O₂ (hydrogen peroxide)

H₂O (water)

The molar mass of H_2O_2 is 34.02 g/mol.

The molar mass of H_2O is 18.02 g/mol.

What is the mass percent of oxygen in each substance? H_2O_2 versus H_2O

H₂O₂ (hydrogen peroxide)

H₂O (water)

The molar mass of H_2O_2 is 34.02 g/mol.

$$\frac{2(16.00) \text{ g}}{34.02 \text{ g}} \times 100\% = 94.06\% \text{ 0}$$

The molar mass of H_2O is 18.02 g/mol.

 $\frac{16.00 \text{ g}}{18.02 \text{ g}} \times 100\% = 88.79\% \text{ 0}$

What is the mass percent of oxygen in each substance? H_2O_2 versus H_2O

H₂O₂ (hydrogen peroxide)

H₂O (water)

The molar mass of H_2O_2 is 34.02 g/mol.

 $\frac{2(16.00) \text{ g}}{34.02 \text{ g}} \times 100\% = 94.06\% \text{ 0}$

The molar mass of H_2O is 18.02 g/mol.

 $\frac{16.00 \text{ g}}{18.02 \text{ g}} \times 100\% = 88.79\% \text{ O}$

What is the mass percent of hydrogen in each substance?

What is the mass percent of oxygen in each substance? H_2O_2 versus H_2O

H₂O₂ (hydrogen peroxide)

H₂O (water)

The molar mass of H_2O_2 is 34.02 g/mol.

 $\frac{2(16.00) \text{ g}}{34.02 \text{ g}} \times 100\% = 94.06\% \text{ O}$

The molar mass of H_2O is 18.02 g/mol.

 $\frac{16.00 \text{ g}}{18.02 \text{ g}} \times 100\% = 88.79\% \text{ O}$

What is the mass percent of hydrogen in each substance? $\frac{2(1.008) \text{ g}}{34.02 \text{ g}} \times 100\% = 5.93\% \text{ H}$ $\frac{2(1.008) \text{ g}}{18.02 \text{ g}} \times 100\% = 11.19\% \text{ H}$

Note: The numbers will not always be exactly 100%.

Most often, we use mass percentages to help us figure out what compound we have.

These are called **EMPIRICAL FORMULAS**.

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's 30.4% nitrogen by mass.

- We want to know: N_xO_y = formula? name?
- Remember: the amount doesn't matter for percent composition!

- We want to know: N_xO_y = formula? name?
- Remember: the amount doesn't matter for percent composition!
- Let's assume we have 100 g of our N_xO_y .
- This means that for every 100 g of N_xO_y , we have:
 - 30.4 g of N
 - 69.6 g of O

- We want to know: N_xO_y = formula? name?
- Remember: the amount doesn't matter for percent composition!
- Let's assume we have 100 g of our N_xO_y .
- This means that for every 100 g of N_xO_y , we have:
 - 30.4 g of N
 - 69.6 g of O

Q: Is our formula then $N_{30.4}O_{69.6}$?

A: No! Why? A chemical formula represents number of atoms in a compound, not the mass of each.

We <u>must</u> convert the masses to <u>moles</u>.

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's 30.4% nitrogen by mass.

• We want to know: N_xO_y = formula? name?

We <u>must</u> convert the masses to <u>moles</u>.

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's 30.4% nitrogen by mass.

• We want to know: N_xO_y = formula? name?

We <u>must</u> convert the masses to <u>moles</u>.

N → 30.4 g N ×
$$\frac{1 \text{ mol N}}{14.01 \text{ g N}}$$
 = 2.17 mol N
O → 69.6 g O × $\frac{1 \text{ mol O}}{16.00 \text{ g O}}$ = 4.35 mol O

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's 30.4% nitrogen by mass.

• We want to know: N_xO_y = formula? name?

We <u>must</u> convert the masses to <u>moles</u>.

N → 30.4 g N ×
$$\frac{1 \text{ mol N}}{14.01 \text{ g N}}$$
 = 2.17 mol N
O → 69.6 g O × $\frac{1 \text{ mol O}}{16.00 \text{ g O}}$ = 4.35 mol O

Q: So, is our formula then N_{2.17}O_{4.35}?
A: No! Why? Atoms can't be fractional. We need a <u>whole number ratio</u>!

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's 30.4% nitrogen by mass.

• We want to know: N_xO_y = formula? name?

We need the <u>simplest whole number ratio!</u>

• We want to know: N_xO_y = formula? name?

We need the simplest whole number ratio!

$$N \rightarrow 30.4 \text{ g N} \times \frac{1 \text{ mor } N}{14.01 \text{ g N}} = 2.17 \text{ mol } \text{N} \rightarrow \frac{2.17 \text{ mor } N}{2.17} = 1 \text{ N}$$

$$0 \rightarrow 69.6 \text{ g O} \times \frac{1 \text{ mol } 0}{16.00 \text{ g O}} = 4.35 \text{ mol } \text{O} \rightarrow \frac{4.35 \text{ mol } \text{O}}{2.17} = 2 \text{ O}$$

Divide the number of moles

Divide the number of moles by the <u>SMALLEST</u> value!

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's 30.4% nitrogen by mass.

• We want to know: N_xO_y = formula? name?

We need the <u>simplest whole number ratio!</u>

$$N \rightarrow 30.4 \text{ g N} \times \frac{1 \text{ mol N}}{14.01 \text{ g N}} = 2.17 \text{ mol N} \rightarrow \frac{2.17 \text{ mol N}}{2.17} = 1 \text{ N}$$
$$0 \rightarrow 69.6 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 4.35 \text{ mol O} \rightarrow \frac{4.35 \text{ mol O}}{2.17} = 2 \text{ O}$$

THIS IS IT! Our compound has the empirical formula: NO₂ (nitrogen dioxide)

Find the percent composition of dinitrogen tetroxide.

• The molar mass of dinitrogen tetroxide (N_2O_4) is 92.02 g/mol.

Find the percent composition of dinitrogen tetroxide.

• The molar mass of dinitrogen tetroxide (N_2O_4) is 92.02 g/mol.

$$\% N \rightarrow \frac{2(14.01) \text{ g}}{92.02 \text{ g}} \times 100\% = 30.4\% \text{ N}$$

$$\% O \rightarrow \frac{4(16.00) \text{ g}}{92.02 \text{ g}} \times 100\% = 69.6\% \text{ O}$$

$$100.0\% \text{ total}$$

Find the percent composition of dinitrogen tetroxide.

• The molar mass of dinitrogen tetroxide (N_2O_4) is 92.02 g/mol.

$$\% N \rightarrow \frac{2(14.01) \text{ g}}{92.02 \text{ g}} \times 100\% = 30.4\% \text{ N}$$

$$\% O \rightarrow \frac{4(16.00) \text{ g}}{92.02 \text{ g}} \times 100\% = 69.6\% \text{ O}$$

$$100.0\% \text{ total}$$

This is the same as $NO_2!$

Q: How do we differentiate between NO₂ and N₂O₄? A: You can use the molar masses of NO₂ and N₂O₄

Aluminum oxide (AI_xO_y) is 41.51% Al and 36.92% O. Determine the empirical formula.

Aluminum oxide (AI_xO_y) is 41.51% Al and 36.92% O. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.

Al \rightarrow 41.51 g Al 0 \rightarrow 36.92 g O

Aluminum oxide (AI_xO_y) is 41.51% Al and 36.92% O. Determine the empirical formula.

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.

Al
$$\rightarrow 41.51 \text{ g Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} = 1.54 \text{ mol Al}$$

0 $\rightarrow 36.92 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 2.31 \text{ mol O}$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.

Al
$$\rightarrow 41.51 \text{ g Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} = 1.54 \text{ mol Al} \rightarrow \frac{1.54 \text{ mol Al}}{1.54} = 1 \text{ Al}$$

0 $\rightarrow 36.92 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 2.31 \text{ mol O} \rightarrow \frac{2.31 \text{ mol O}}{1.54} = 1.5 \text{ O}$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.
- 4. Write empirical formula from simplest whole number ratio.

$$\begin{array}{ll} \text{Al} &\rightarrow & 41.51 \text{ g Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} = 1.54 \text{ mol Al} \rightarrow \frac{1.54 \text{ mol Al}}{1.54} = 1 \text{ Al} \\ 0 &\rightarrow & 36.92 \text{ g } 0 \times \frac{1 \text{ mol } 0}{16.00 \text{ g } 0} = 2.31 \text{ mol } 0 \rightarrow \frac{2.31 \text{ mol } 0}{1.54} = 1.5 0 \end{array}$$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.
- 4. Write empirical formula from simplest whole number ratio.

$$Al \rightarrow 41.51 \text{ g Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g Al}} = 1.54 \text{ mol Al} \rightarrow \frac{1.54 \text{ mol Al}}{1.54} = 1 \text{ Al} \times 2 \rightarrow 2 \text{ Al}$$
$$0 \rightarrow 36.92 \text{ g } 0 \times \frac{1 \text{ mol } 0}{16.00 \text{ g } 0} = 2.31 \text{ mol } 0 \rightarrow \frac{2.31 \text{ mol } 0}{1.54} = 1.50 \times 2 \rightarrow 3 0$$
$$Multiply \text{ to get whole numbers!}$$

- 1. Assume a 100 g sample.
- 2. Convert masses to moles.
- 3. Divide the mole amounts by the smallest mole value.
- 4. Write empirical formula from simplest whole number ratio.

$$\begin{array}{rcl} \text{Al} &\to& 41.51\,\,\text{g}\,\text{Al} \times \frac{1\,\,\text{mol}\,\text{Al}}{26.98\,\,\text{g}\,\text{Al}} = 1.54\,\,\text{mol}\,\text{Al} \to& \frac{1.54\,\,\text{mol}\,\text{Al}}{1.54} &=& 1\,\,\text{Al} & \times 2 \to& 2\,\,\text{Al} \\ &&&& \text{Al}_2\text{O}_3 \\ 0 &\to& 36.92\,\,\text{g}\,0 \times \frac{1\,\,\text{mol}\,0}{16.00\,\,\text{g}\,0} = 2.31\,\,\text{mol}\,0 \to& \frac{2.31\,\,\text{mol}\,0}{1.54} &=& 1.5\,\,0 & \times 2 \to& 3\,\,0 \end{array}$$

Dr. Mioy Huynh

Calculate the empirical formula for cisplatin if it is found to be 65.02% Pt, 9.34% N, 2.02% H, and 23.63% CI by mass.

Calculate the empirical formula for cisplatin if it is found to be 65.02% Pt, 9.34% N, 2.02% H, and 23.63% CI by mass.

Assuming a 100 g sample of cisplatin ($Pt_aN_bH_cCI_d$):

$$\begin{array}{rcl} \text{Pt} & \rightarrow & 65.02 \text{ g Pt} \times \frac{1 \text{ mol Pt}}{195.1 \text{ g Pt}} = 0.3333 \text{ mol Pt} \rightarrow \frac{0.3333 \text{ mol Pt}}{0.3333} &= & 1 \text{ Pt} \\ \text{N} & \rightarrow & 9.34 \text{ g N} \times \frac{1 \text{ mol N}}{14.01 \text{ g N}} = & 0.667 \text{ mol N} \rightarrow \frac{0.667 \text{ mol N}}{0.3333} &= & 2 \text{ N} \\ \text{H} & \rightarrow & 2.02 \text{ g H} \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = & 2.00 \text{ mol H} \rightarrow \frac{2.00 \text{ mol H}}{0.3333} &= & 6 \text{ H} \\ \text{Cl} & \rightarrow & 23.63 \text{ g Cl} \times \frac{1 \text{ mol Cl}}{35.45 \text{ g Cl}} = & 0.6666 \text{ mol Cl} \rightarrow \frac{0.6666 \text{ mol Cl}}{0.3333} &= & 2 \text{ Cl} \end{array}$$

 $PtN_2H_6Cl_2$

Dr. Mioy Huynh

Calculate the empirical formula for a halohydrocarbon if it is 71.65% CI, 24.27% C, and 4.07% H by mass.

Calculate the empirical formula for a halohydrocarbon if it is 71.65% CI, 24.27% C, and 4.07% H by mass.

Assuming a 100 g sample of the halohydrocarbon ($CI_aC_bH_c$):

$$\begin{array}{rcl} \text{Cl} & \rightarrow & 71.65 \text{ g Cl} \times \frac{1 \text{ mol Cl}}{35.45 \text{ g Cl}} = 2.021 \text{ mol Cl} & \rightarrow & \frac{2.021 \text{ mol Cl}}{2.021} & = 1 \text{ Cl} \\ \text{C} & \rightarrow & 24.27 \text{ g C} \times \frac{1 \text{ mol C}}{12.01 \text{ g C}} = 2.021 \text{ mol C} & \rightarrow & \frac{2.021 \text{ mol C}}{2.021} & = 1 \text{ Cl} \\ \text{H} & \rightarrow & 4.07 \text{ g H} \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = 4.04 \text{ mol H} & \rightarrow & \frac{4.04 \text{ mol H}}{2.021} & = 2 \text{ H} \end{array}$$

The empirical formula is $CICH_2$.

We determined previously that the empirical formula is $CICH_2$.

The empirical formula mass is 49.48 g/mol.

We determined previously that the empirical formula is $CICH_2$. The empirical formula mass is 49.48 g/mol.

The molecular formula is <u>always</u> a multiple of the empirical formula. So: $(CICH_2)_n$

We determined previously that the empirical formula is $CICH_2$. The empirical formula mass is 49.48 g/mol.

The molecular formula is <u>always</u> a multiple of the empirical formula. So: $(CICH_2)_n$

We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

 $n = \frac{Molar\ mass}{Empirical\ formula\ mass}$

We determined previously that the empirical formula is $CICH_2$. The empirical formula mass is 49.48 g/mol.

The molecular formula is <u>always</u> a multiple of the empirical formula. So: $(CICH_2)_n$

We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

$$n = \frac{Molar \ mass}{Empirical \ formula \ mass} = \frac{98.96 \ g}{49.48 \ g} = 2$$

The molecular formula is $(CICH_2)_2$ or $CI_2C_2H_4$.

Dr. Mioy Huynh

For each of the following, the <u>molecular formula</u> is given. Determine the <u>empirical formula</u> for each compound.

 H_2O_2

 C_6H_6

 C_4H_{10}

 CCI_4

 $C_2H_4CI_4O_2$

For each of the following, the <u>molecular formula</u> is given. Determine the <u>empirical formula</u> for each compound.

- H_2O_2 34.02 g/mol
- C₆H₆ 78.11 g/mol
- C₄H₁₀ 58.12 g/mol
- CCl₄ 153.81 g/mol

 $C_2H_4CI_4O_2$ 201.85 g/mol

For each of the following, the <u>molecular formula</u> is given. Determine the <u>empirical formula</u> for each compound.

H_2O_2	34.02 g/mol	HO	17.01 g/mol
C_6H_6	78.11 g/mol	СН	13.02 g/mol
C_4H_{10}	58.12 g/mol	C_2H_5	29.06 g/mol
CCI ₄	153.81 g/mol	CCl ₄	153.81 g/mol
$C_2H_4CI_4O_2$	201.85 g/mol	CH_2CI_2O	100.93 g/mol

For each of the following, the <u>molecular formula</u> is given. Determine the <u>empirical formula</u> for each compound.

H_2O_2	34.02 g/mol	HO	17.01 g/mol	<i>n</i> = 2
C_6H_6	78.11 g/mol	CH	13.02 g/mol	<i>n</i> = 6
C_4H_{10}	58.12 g/mol	C_2H_5	29.06 g/mol	<i>n</i> = 2
CCI ₄	153.81 g/mol	CCI ₄	153.81 g/mol	<i>n</i> = 1
$C_2H_4CI_4O_2$	201.85 g/mol	CH_2CI_2O	100.93 g/mol	n = 2