Mass Percent and Formulas

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2018

www.mioy.org/chem161

Introduction to mass percent

Imagine a single molecule of methane: CH_{4}

- Ask yourself: Does this molecule contain more hydrogen or more carbon?
- IT DEPENDS!
- Technically, 4 out of 5 atoms are hydrogen (80%), but....

Introduction to mass percent

CHEMISTS CARE ABOUT MASS PERCENT!

$$
\% \text { Mass }=\frac{\text { mass part }}{\text { mass whole }} \times 100 \%
$$

How do I calculate the mass percentages for CH_{4} ?

- Remember that the molar mass of CH_{4} is $16.04 \mathrm{~g} / \mathrm{mol}$:
$1 \mathrm{~mol} \mathrm{CH}_{4}=1 \mathrm{molC}+4 \mathrm{~mol} \mathrm{H}$
$=1(12.01 \mathrm{~g})+4(1.008 \mathrm{~g})=16.04 \mathrm{~g}$

How do I calculate the mass percentages for CH_{4} ?

- Remember that the molar mass of CH_{4} is $16.04 \mathrm{~g} / \mathrm{mol}$:
$1 \mathrm{~mol} \mathrm{CH}_{4}=1 \mathrm{molC}+4 \mathrm{~mol} \mathrm{H}$

$$
=1(12.01 \mathrm{~g})+4(1.008 \mathrm{~g})=16.04 \mathrm{~g}
$$

$$
\begin{gathered}
\% \text { Mass }=\frac{\text { mass part }}{\text { mass whole }} \times 100 \% \\
\% \mathrm{C} \rightarrow \frac{1(12.01) \mathrm{g}}{16.04 \mathrm{~g}} \times 100 \%=74.90 \% \mathrm{C} \\
\% \mathrm{H} \rightarrow \frac{4(1.008) \mathrm{g}}{16.04 \mathrm{~g}} \times 100 \%=\frac{25.10 \% \mathrm{H}}{100.0 \% \text { total }}
\end{gathered}
$$

How do I calculate the mass percentages for $2 \mathrm{~mol} \mathrm{CH}_{4}$?

How do I calculate the mass percentages for $2 \mathrm{~mol} \mathrm{CH}_{4}$?

- The molar mass of CH_{4} is $16.04 \mathrm{~g} / \mathrm{mol}$, but now:

$$
\begin{aligned}
2 \mathrm{~mol} \mathrm{CH}_{4} & =2 \mathrm{~mol} \mathrm{C} \\
& =2(12.01 \mathrm{~g})+8(1.008 \mathrm{gol} \mathrm{H} \\
& =32.08 \mathrm{~g}
\end{aligned}
$$

How do I calculate the mass percentages for $2 \mathrm{~mol} \mathrm{CH}_{4}$?

- The molar mass of CH_{4} is $16.04 \mathrm{~g} / \mathrm{mol}$, but now:

$$
\begin{aligned}
2 \mathrm{~mol} \mathrm{CH}_{4} & =2 \mathrm{~mol} \mathrm{C} \\
& =2(12.01 \mathrm{~g})+8(1.008 \mathrm{gol} \mathrm{H} \\
& =32.08 \mathrm{~g}
\end{aligned}
$$

$$
\begin{gathered}
\text { \% Mass }=\frac{\text { mass part }}{\text { mass whole }} \times 100 \% \\
\% \mathrm{C} \rightarrow \frac{2(12.01) \mathrm{g}}{32.08 \mathrm{~g}} \times 100 \%=74.90 \% \mathrm{C} \\
\% \mathrm{H} \rightarrow \frac{8(1.008) \mathrm{g}}{32.08 \mathrm{~g}} \times 100 \%=\frac{25.10 \% \mathrm{H}}{100.0 \% \text { total }}
\end{gathered}
$$

How do I calculate the mass percentages for $2 \mathrm{~mol} \mathrm{CH}_{4}$?

- The molar mass of CH_{4} is $16.04 \mathrm{~g} / \mathrm{mol}$, but now:

$$
\begin{aligned}
2 \mathrm{~mol} \mathrm{CH}_{4} & =2 \mathrm{~mol} \mathrm{C} \\
& =2(12.01 \mathrm{~g})+8(1.008 \mathrm{gol} \mathrm{H} \\
& =32.08 \mathrm{~g}
\end{aligned}
$$

$$
\% \text { Mass }=\frac{\text { mass part }}{\text { mass whole }} \times 100 \%
$$

$$
\% \mathrm{C} \rightarrow \frac{2(12.01) \mathrm{g}}{32.08 \mathrm{~g}} \times 100 \%=74.90 \% \mathrm{C}
$$

$$
\% \mathrm{H} \rightarrow \frac{8(1.008) \mathrm{g}}{32.08 \mathrm{~g}} \times 100 \%=\frac{25.10 \% \mathrm{H}}{100.0 \% \text { total }} \text { SAME THING! }
$$

TAKE-HOME MESSAGE

Percent composition is independent of the starting amount!

This is why we usually assume we have 100 g or 1 mol .
These are just super easy numbers to work with.

Note: If you wanted to use a strange amount, like 0.27 mol or 74.5 g of substance, your answers would be the same but the math isn't as convenient. BUT you'll still be right. :)

What is the mass percent of oxygen in each substance? $\mathrm{H}_{2} \mathrm{O}_{2}$ versus $\mathrm{H}_{2} \mathrm{O}$

What is the mass percent of oxygen in each substance?

$\mathrm{H}_{2} \mathrm{O}_{2}$ versus $\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}_{2}$ (hydrogen peroxide)

$$
\mathrm{H}_{2} \mathrm{O} \text { (water) }
$$

The molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $34.02 \mathrm{~g} / \mathrm{mol}$.
The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} / \mathrm{mol}$.

What is the mass percent of oxygen in each substance?

 $\mathrm{H}_{2} \mathrm{O}_{2}$ versus $\mathrm{H}_{2} \mathrm{O}$$\mathrm{H}_{2} \mathrm{O}_{2}$ (hydrogen peroxide)
The molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $34.02 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{2(16.00) \mathrm{g}}{34.02 \mathrm{~g}} \times 100 \%=94.06 \% 0
$$

$\mathrm{H}_{2} \mathrm{O}$ (water)

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{16.00 \mathrm{~g}}{18.02 \mathrm{~g}} \times 100 \%=88.79 \% 0
$$

What is the mass percent of oxygen in each substance?

 $\mathrm{H}_{2} \mathrm{O}_{2}$ versus $\mathrm{H}_{2} \mathrm{O}$$\mathrm{H}_{2} \mathrm{O}_{2}$ (hydrogen peroxide)
The molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $34.02 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{2(16.00) \mathrm{g}}{34.02 \mathrm{~g}} \times 100 \%=94.06 \% 0
$$

$\mathrm{H}_{2} \mathrm{O}$ (water)

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{16.00 \mathrm{~g}}{18.02 \mathrm{~g}} \times 100 \%=88.79 \% 0
$$

What is the mass percent of hydrogen in each substance?

What is the mass percent of oxygen in each substance?

 $\mathrm{H}_{2} \mathrm{O}_{2}$ versus $\mathrm{H}_{2} \mathrm{O}$$\mathrm{H}_{2} \mathrm{O}_{2}$ (hydrogen peroxide)
The molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $34.02 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{2(16.00) \mathrm{g}}{34.02 \mathrm{~g}} \times 100 \%=94.06 \% 0
$$

$\mathrm{H}_{2} \mathrm{O}$ (water)

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $18.02 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{16.00 \mathrm{~g}}{18.02 \mathrm{~g}} \times 100 \%=88.79 \% 0
$$

What is the mass percent of hydrogen in each substance?

$$
\frac{2(1.008) \mathrm{g}}{34.02 \mathrm{~g}} \times 100 \%=5.93 \% \mathrm{H} \quad \frac{2(1.008) \mathrm{g}}{18.02 \mathrm{~g}} \times 100 \%=11.19 \% \mathrm{H}
$$

Note: The numbers will not always be exactly 100\%.

Most often，we use mass percentages to help us figure out what compound we have．
These are called EMPIRICAL FORMULAS．

－

 ． （者

\qquad

路
\qquad

（

都

\title{

} －

\qquad
\qquad
\qquad
\qquad what it is (both formula and name). You know that it's $\mathbf{3 0 . 4} \%$ nitrogen by mass.

CHEMISTRY 161 - Fall 2018

 what it is (both formula and name). You know that it's $\mathbf{3 0 . 4} \%$ nitrogen by mass.- We want to know: $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?
- Remember: the amount doesn't matter for percent composition! what it is (both formula and name). You know that it's $\mathbf{3 0 . 4 \%}$ nitrogen by mass.
- We want to know: $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?
- Remember: the amount doesn't matter for percent composition!
- Let's assume we have 100 g of our $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$.
- This means that for every 100 g of $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$, we have:
- 30.4 g of N
- 69.6 g of O what it is (both formula and name). You know that it's 30.4\% nitrogen by mass.
- We want to know: $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?
- Remember: the amount doesn't matter for percent composition!
- Let's assume we have 100 g of our $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$.
- This means that for every 100 g of $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$, we have:
- 30.4 g of N
- 69.6 g of O

Q: Is our formula then $\mathrm{N}_{30.4} \mathrm{O}_{69.6}$?
A: No! Why? A chemical formula represents number of atoms in a compound, not the mass of each. We must convert the masses to moles.

CHEMISTRY 161 - Fall 2018

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's $\mathbf{3 0 . 4} \%$ nitrogen by mass.

- We want to know: $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?

We must convert the masses to moles. what it is (both formula and name). You know that it's $\mathbf{3 0 . 4} \%$ nitrogen by mass.

- We want to know: $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?

We must convert the masses to moles.

$$
\begin{aligned}
& \mathrm{N} \rightarrow 30.4 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=2.17 \mathrm{~mol} \mathrm{~N} \\
& \mathrm{O} \rightarrow 69.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=4.35 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$ what it is (both formula and name). You know that it's 30.4\% nitrogen by mass.

- We want to know: $\quad \mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?

We must convert the masses to moles.

$$
\begin{aligned}
& \mathrm{N} \rightarrow 30.4 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=2.17 \mathrm{~mol} \mathrm{~N} \\
& \mathrm{O} \rightarrow 69.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=4.35 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Q : So, is our formula then $\mathrm{N}_{2.17} \mathrm{O}_{4.35}$?
A: No! Why? Atoms can't be fractional.
We need a whole number ratio!

CHEMISTRY 161 - Fall 2018

You have some "nitrogen oxide" compound and you want to figure out what it is (both formula and name). You know that it's $\mathbf{3 0 . 4} \%$ nitrogen by mass.

- We want to know: $\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=$ formula? name?

We need the simplest whole number ratio! what it is (both formula and name). You know that it's 30.4\% nitrogen by mass.

- We want to know:

$$
\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=\text { formula? name? }
$$

We need the simplest whole number ratio!

$$
\begin{aligned}
& \mathrm{N} \rightarrow 30.4 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=2.17 \mathrm{~mol} \mathrm{~N} \rightarrow \frac{2.17 \mathrm{~mol} \mathrm{~N}}{2.17}=1 \mathrm{~N} \\
& 0 \rightarrow 69.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=4.35 \mathrm{~mol} \mathrm{O} \rightarrow \frac{4.35 \mathrm{~mol} \mathrm{O}}{2.17}=20
\end{aligned}
$$

Divide the number of moles by the SMALLEST value! what it is (both formula and name). You know that it's 30.4\% nitrogen by mass.

- We want to know:

$$
\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}=\text { formula? name? }
$$

We need the simplest whole number ratio!

$$
\begin{aligned}
& \mathrm{N} \rightarrow 30.4 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=2.17 \mathrm{~mol} \mathrm{~N} \rightarrow \frac{2.17 \mathrm{~mol} \mathrm{~N}}{2.17}=1 \mathrm{~N} \\
& 0 \rightarrow 69.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=4.35 \mathrm{~mol} \mathrm{O} \rightarrow \frac{4.35 \mathrm{~mol} \mathrm{O}}{2.17}=20
\end{aligned}
$$

THIS IS IT!

Our compound has the empirical formula: NO_{2} (nitrogen dioxide)

Find the percent composition of dinitrogen tetroxide.

- The molar mass of dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ is $92.02 \mathrm{~g} / \mathrm{mol}$.

Find the percent composition of dinitrogen tetroxide.

- The molar mass of dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ is $92.02 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& \% \mathrm{~N} \rightarrow \frac{2(14.01) \mathrm{g}}{92.02 \mathrm{~g}} \times 100 \%=30.4 \% \mathrm{~N} \\
& \% \mathrm{O} \rightarrow \frac{4(16.00) \mathrm{g}}{92.02 \mathrm{~g}} \times 100 \%=\frac{69.6 \% \mathrm{O}}{100.0 \% \text { total }}
\end{aligned}
$$

Find the percent composition of dinitrogen tetroxide.

- The molar mass of dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ is $92.02 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& \% \mathrm{~N} \rightarrow \frac{2(14.01) \mathrm{g}}{92.02 \mathrm{~g}} \times 100 \%=30.4 \% \mathrm{~N} \\
& \% \mathrm{O} \rightarrow \frac{4(16.00) \mathrm{g}}{92.02 \mathrm{~g}} \times 100 \%=\frac{69.6 \% \mathrm{O}}{100.0 \% \text { total }}
\end{aligned}
$$

This is the same as NO_{2} !
Q: How do we differentiate between NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$?
A: You can use the molar masses of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
$\mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al}$
$0 \rightarrow 36.92 \mathrm{go}$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.

$$
\begin{aligned}
& \mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \\
& 0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.

$$
\begin{aligned}
& \text { Al } \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} \\
& 0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}=1.50
\end{aligned}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.
4. Write empirical formula from simplest whole number ratio.

$$
\begin{array}{ll}
\mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{ll}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} & \begin{array}{c}
\text { Uh... these } \\
\text { aren't whole }
\end{array} \\
0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}=1.50 \quad \text { numbers! }
\end{array}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.
4. Write empirical formula from simplest whole number ratio.

$$
\begin{aligned}
& \mathrm{Al} \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} \times 2 \rightarrow 2 \mathrm{Al} \\
& 0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}= 1.50 \times 2 \rightarrow 30 \\
& \text { Multiply to get } \\
& \text { whole numbers! }
\end{aligned}
$$

Aluminum oxide $\left(\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)$ is $41.51 \% \mathrm{Al}$ and $36.92 \% \mathrm{O}$. Determine the empirical formula.

General procedure:

1. Assume a 100 g sample.
2. Convert masses to moles.
3. Divide the mole amounts by the smallest mole value.
4. Write empirical formula from simplest whole number ratio.

$$
\begin{aligned}
& \text { Al } \rightarrow 41.51 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}}=1.54 \mathrm{~mol} \mathrm{Al} \rightarrow \frac{1.54 \mathrm{~mol} \mathrm{Al}}{1.54}=1 \mathrm{Al} \times 2 \rightarrow 2 \mathrm{Al} \\
& 0 \rightarrow 36.92 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.31 \mathrm{~mol} \mathrm{O} \rightarrow \frac{2.31 \mathrm{~mol} \mathrm{O}}{1.54}=1.5 \mathrm{O} \times 2 \rightarrow 3 \mathrm{O}
\end{aligned}
$$

Calculate the empirical formula for cisplatin if it is found to be $\mathbf{6 5 . 0 2 \%} \mathrm{Pt}, \mathbf{9 . 3 4 \%} \mathrm{N}, \mathbf{2 . 0 2 \%} \mathrm{H}$, and $23.63 \% \mathrm{Cl}$ by mass.

Calculate the empirical formula for cisplatin if it is found to be $\mathbf{6 5 . 0 2 \%} \mathrm{Pt}, 9.34 \% \mathrm{~N}, \mathbf{2 . 0 2 \%} \mathrm{H}$, and $23.63 \% \mathrm{Cl}$ by mass.

Assuming a 100 g sample of cisplatin $\left(\mathrm{Pt}_{\mathrm{a}} \mathrm{N}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}} \mathrm{Cl}_{\mathrm{d}}\right)$:

$$
\begin{aligned}
& \mathrm{Pt} \rightarrow 65.02 \mathrm{~g} \mathrm{Pt} \times \frac{1 \mathrm{~mol} \mathrm{Pt}}{195.1 \mathrm{~g} \mathrm{Pt}}=0.3333 \mathrm{~mol} \mathrm{Pt} \rightarrow \frac{0.3333 \mathrm{~mol} \mathrm{Pt}}{0.3333}=1 \mathrm{Pt} \\
& \mathrm{~N} \rightarrow 9.34 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=0.667 \mathrm{~mol} \mathrm{~N} \rightarrow \frac{0.667 \mathrm{~mol} \mathrm{~N}}{0.3333}=2 \mathrm{~N} \\
& \mathrm{H} \rightarrow 2.02 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=2.00 \mathrm{~mol} \mathrm{H} \rightarrow \frac{2.00 \mathrm{~mol} \mathrm{H}}{0.3333}=6 \mathrm{H} \\
& \mathrm{Cl} \rightarrow 23.63 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=0.6666 \mathrm{~mol} \mathrm{Cl} \rightarrow \frac{0.6666 \mathrm{~mol} \mathrm{Cl}}{0.3333}=2 \mathrm{Cl}
\end{aligned}
$$

$$
\mathrm{PtN}_{2} \mathrm{H}_{6} \mathrm{Cl}_{2}
$$

Calculate the empirical formula for a halohydrocarbon if it is 71.65\% CI, 24.27\% C, and 4.07\% H by mass.

Calculate the empirical formula for a halohydrocarbon if it is $71.65 \% \mathrm{CI}, \mathbf{2 4 . 2 7 \%}$ C, and $4.07 \% \mathrm{H}$ by mass.

Assuming a 100 g sample of the halohydrocarbon $\left(\mathrm{Cl}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}}\right)$:

$$
\begin{aligned}
& \mathrm{Cl} \rightarrow 71.65 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=2.021 \mathrm{~mol} \mathrm{Cl} \\
& \mathrm{C} \rightarrow \frac{2.021 \mathrm{~mol} \mathrm{Cl}}{2.021}=1 \mathrm{Cl} \\
& \mathrm{H} \rightarrow 4.27 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=2.021 \mathrm{~mol} \mathrm{C} \\
& \rightarrow \frac{2.021 \mathrm{~mol} \mathrm{C}}{2.021}=1 \mathrm{C} \\
&
\end{aligned}
$$

The empirical formula is ClCH_{2}.

Determine the molecular formula for the same halohydrocarbon if it has a molar mass of $98.96 \mathrm{~g} / \mathrm{mol}$.

Determine the molecular formula for the same halohydrocarbon if it has a molar mass of $98.96 \mathrm{~g} / \mathrm{mol}$.

We determined previously that the empirical formula is ClCH_{2}.
The empirical formula mass is $49.48 \mathrm{~g} / \mathrm{mol}$.

Determine the molecular formula for the same halohydrocarbon if it has a molar mass of $98.96 \mathrm{~g} / \mathrm{mol}$.

We determined previously that the empirical formula is ClCH_{2}.
The empirical formula mass is $49.48 \mathrm{~g} / \mathrm{mol}$.
The molecular formula is always a multiple of the empirical formula. So: $\left(\mathrm{CICH}_{2}\right)_{n}$

Determine the molecular formula for the same halohydrocarbon if it has a molar mass of $98.96 \mathrm{~g} / \mathrm{mol}$.

We determined previously that the empirical formula is ClCH_{2}.
The empirical formula mass is $49.48 \mathrm{~g} / \mathrm{mol}$.

The molecular formula is always a multiple of the empirical formula. So: $\left(\mathrm{CICH}_{2}\right)_{n}$

We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

$$
n=\frac{\text { Molar mass }}{\text { Empirical formula mass }}
$$

Determine the molecular formula for the same halohydrocarbon if it has a molar mass of $98.96 \mathrm{~g} / \mathrm{mol}$.

We determined previously that the empirical formula is ClCH_{2}.
The empirical formula mass is $49.48 \mathrm{~g} / \mathrm{mol}$.

The molecular formula is always a multiple of the empirical formula. So: $\left(\mathrm{CICH}_{2}\right)_{n}$

We can determine the multiple (n) by taking the ratio between the molecular formula's molar mass and the empirical formula mass:

$$
n=\frac{\text { Molar mass }}{\text { Empirical formula mass }}=\frac{98.96 \mathrm{~g}}{49.48 \mathrm{~g}}=2
$$

The molecular formula is $\left(\mathrm{CICH}_{2}\right)_{2}$ or $\mathrm{Cl}_{2} \mathrm{C}_{2} \mathrm{H}_{4}$.

For each of the following, the molecular formula is given. Determine the empirical formula for each compound.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2} \\
& \mathrm{C}_{6} \mathrm{H}_{6} \\
& \mathrm{C}_{4} \mathrm{H}_{10} \\
& \mathrm{CCl}_{4} \\
& \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}
\end{aligned}
$$

For each of the following, the molecular formula is given. Determine the empirical formula for each compound.

$\mathrm{H}_{2} \mathrm{O}_{2}$	$34.02 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{6} \mathrm{H}_{6}$	$78.11 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{4} \mathrm{H}_{10}$	$58.12 \mathrm{~g} / \mathrm{mol}$
CCl_{4}	$153.81 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}$	$201.85 \mathrm{~g} / \mathrm{mol}$

For each of the following, the molecular formula is given. Determine the empirical formula for each compound.

$\mathrm{H}_{2} \mathrm{O}_{2}$	$34.02 \mathrm{~g} / \mathrm{mol}$	HO	$17.01 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{6} \mathrm{H}_{6}$	$78.11 \mathrm{~g} / \mathrm{mol}$	CH	$13.02 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{4} \mathrm{H}_{10}$	$58.12 \mathrm{~g} / \mathrm{mol}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$29.06 \mathrm{~g} / \mathrm{mol}$
CCl_{4}	$153.81 \mathrm{~g} / \mathrm{mol}$	CCl_{4}	$153.81 \mathrm{~g} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}$	$201.85 \mathrm{~g} / \mathrm{mol}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{O}$	$100.93 \mathrm{~g} / \mathrm{mol}$

For each of the following, the molecular formula is given. Determine the empirical formula for each compound.

$\mathrm{H}_{2} \mathrm{O}_{2}$	$34.02 \mathrm{~g} / \mathrm{mol}$	HO	$17.01 \mathrm{~g} / \mathrm{mol}$	$n=2$
$\mathrm{C}_{6} \mathrm{H}_{6}$	$78.11 \mathrm{~g} / \mathrm{mol}$	CH	$13.02 \mathrm{~g} / \mathrm{mol}$	$n=6$
$\mathrm{C}_{4} \mathrm{H}_{10}$	$58.12 \mathrm{~g} / \mathrm{mol}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$29.06 \mathrm{~g} / \mathrm{mol}$	$n=2$
CCl_{4}	$153.81 \mathrm{~g} / \mathrm{mol}$	CCl_{4}	$153.81 \mathrm{~g} / \mathrm{mol}$	$n=1$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{O}_{2}$	$201.85 \mathrm{~g} / \mathrm{mol}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{O}$	$100.93 \mathrm{~g} / \mathrm{mol}$	$n=2$

