ACIDS © BAS

CHEMISTRY 165 // SPRING 2020

What happens when we mix an acid and a base?

So far, we have only considered the aqueous equilibria of acids and bases separately:

$$
\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \quad \mathrm{BOH}(\mathrm{aq}) \rightleftharpoons \mathrm{B}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

But we may also consider the chemical reaction that occurs when we mix acids and bases together:

$$
\begin{array}{rl}
\mathrm{HA}(\mathrm{aq})+\mathrm{BOH}(\mathrm{aq}) & \rightleftharpoons \mathrm{HOH}(\mathrm{I})+\left(\mathrm{B}^{+}\right)\left(\mathrm{A}^{-}\right)(\mathrm{aq}) \\
- \text { or- } \\
\mathrm{HA}(\mathrm{aq}) & +\mathrm{BOH}(\mathrm{aq}) \\
\text { acid } & \stackrel{\mathrm{H}}{2} \mathrm{O}(\mathrm{O}) \\
\mathrm{H} & \mathrm{BA}(\mathrm{aq}) \\
\text { water } & \text { salt }
\end{array}
$$

Neutralization: The reaction between an acid and a base to form water and a salt.

The water formed is neutral $(\mathrm{pH}=7)$.

That salt formed may be acidic ($\mathrm{pH}<7$), basic $(\mathrm{pH}>7)$, or neutral $(\mathrm{pH}=7)$ depending on how it reacts with water.

Determining the acidity/basicity of salts

We've discussed that there are strong acids and weak acids and strong bases and weak bases. Depending on the strengths of the acid and base mixed, we can form salts of varying acidity/basicity.

Let's take the example of a strong acid (HCl) and a strong base (NaOH) :

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

Note this is not an equilibrium because we have strong acids and strong bases, which dissociate completely.
To determine the acidity/basicity of the salt:

Determining the acidity/basicity of salts

We've discussed that there are strong acids and weak acids and strong bases and weak bases. Depending on the strengths of the acid and base mixed, we can form salts of varying acidity/basicity.

Let's take the example of a strong acid (HCl) and a strong base (NaOH) :

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

Note this is not an equilibrium because we have strong acids and strong bases, which dissociate completely.
To determine the acidity/basicity of the salt:

1. We need to consider the reaction of the aqueous salt with water. $\quad \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$???
2. Write the reaction of the cation/anion of the salt with water.

Determining the acidity/basicity of salts

We've discussed that there are strong acids and weak acids and strong bases and weak bases. Depending on the strengths of the acid and base mixed, we can form salts of varying acidity/basicity.

Let's take the example of a strong acid (HCl) and a strong base (NaOH) :

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

Note this is not an equilibrium because we
have strong acids and strong bases, which dissociate completely.
To determine the acidity/basicity of the salt:

1. We need to consider the reaction of the aqueous salt with water.
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow ? ? ?$
2. Write the reaction of the cation/anion of the salt with water.
a. The conjugate-acid $\left(\mathrm{Na}^{+}\right)$of a strong base (NaOH) is $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$ no reaction extremely weak, so Na^{+}won't react with $\mathrm{H}_{2} \mathrm{O}$.

In other words, NaOH will not form because NaOH is a strong base and will dissociate completely.

Determining the acidity/basicity of salts

We've discussed that there are strong acids and weak acids and strong bases and weak bases. Depending on the strengths of the acid and base mixed, we can form salts of varying acidity/basicity.

Let's take the example of a strong acid (HCl) and a strong base (NaOH) :

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

Note this is not an equilibrium because we
have strong acids and strong bases, which dissociate completely.

To determine the acidity/basicity of the salt:

1. We need to consider the reaction of the aqueous salt with water.
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow ? ? ?$
2. Write the reaction of the cation/anion of the salt with water.
a. The conjugate-acid $\left(\mathrm{Na}^{+}\right)$of a strong base (NaOH) is extremely weak, so Na^{+}won't react with $\mathrm{H}_{2} \mathrm{O}$.
b. The conjugate-base $\left(\mathrm{Cl}^{-}\right)$of a strong acid (HCl) is extremely weak, so Cl^{-}won't react with $\mathrm{H}_{2} \mathrm{O}$.

In other words, NaOH will not form because NaOH is a strong base and will dissociate completely.

In other words, HCl will not form because HCl is a strong acid and will dissociate completely.

Determining the acidity/basicity of salts

We've discussed that there are strong acids and weak acids and strong bases and weak bases. Depending on the strengths of the acid and base mixed, we can form salts of varying acidity/basicity.

Let's take the example of a strong acid (HCl) and a strong base (NaOH) :

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

Note this is not an equilibrium because we
have strong acids and strong bases, which dissociate completely.
To determine the acidity/basicity of the salt:

1. We need to consider the reaction of the aqueous salt with water.
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow ? ? ?$
2. Write the reaction of the cation/anion of the salt with water.
a. The conjugate-acid $\left(\mathrm{Na}^{+}\right)$of a strong base (NaOH) is extremely weak, so Na^{+}won't react with $\mathrm{H}_{2} \mathrm{O}$.
b. The conjugate-base $\left(\mathrm{Cl}^{-}\right)$of a strong acid (HCl) is extremely weak, so Cl^{-}won't react with $\mathrm{H}_{2} \mathrm{O}$.

In other words, NaOH will not form because NaOH is a strong base and will dissociate completely.

In other words, HCl will not form because HCl is a strong acid and will dissociate completely.
3. Determine acidity/basicity depending on whether the salt produces H^{+}(acidic), OH^{-}(basic), or neither (neutral) in water.
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$ no reaction
NaCl is a neutral salt.

Kinds of salts

We can generalize this analysis to other combinations of strong and weak acids and bases.

The chart below shows an example of this type of analysis on the four possible combinations.

	STRONG ACID (e.g. HCl$)$	WEAK ACID (e.g. HCIO)
STRONG BASE (e.g. NaOH$)$	NaOH $+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ • $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction SALT IS NEUTRAL $(\mathrm{pH}=7)$	
WEAK BASE $\left(\right.$ e.g. $\left.\mathrm{NH}_{3}\right)$		

Kinds of salts

We can extend this type of analysis to other combinations of strong or weak acids and bases.

The chart below shows an example of this type of analysis on the four possible combinations.

	STRONG ACID (e.g. HCI)	WEAK ACID (e.g. HCIO)
STRONG BASE (e.g. NaOH)	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction SALT IS NEUTRAL ($\mathrm{pH}=7$)	$\mathrm{NaOH}+\mathrm{HClO} \rightleftharpoons \mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-}$ SALT IS BASIC ($\mathrm{pH}>7$)
WEAK BASE (e.g. NH_{3})		

The salt will only be acidic or basic if a weak acid or weak base can be formed. Note that for weak acids and bases, the equilibrium lies toward the side of of the undissociated acid or base.

Kinds of salts

We can extend this type of analysis to other combinations of strong or weak acids and bases.

The chart below shows an example of this type of analysis on the four possible combinations.

	STRONG ACID (e.g. HCI)	WEAK ACID (e.g. HCIO)
STRONG BASE (e.g. NaOH)	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction SALT IS NEUTRAL ($\mathrm{pH}=7$)	$\mathrm{NaOH}+\mathrm{HClO} \rightleftharpoons \mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-}$ SALT IS BASIC ($\mathrm{pH}>7$)
WEAK BASE (e.g. NH_{3})	$\mathrm{NH}_{3}+\mathrm{HCl} \rightleftharpoons \mathrm{NH}_{4} \mathrm{Cl}$ - $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+}$ - $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction SALT IS ACIDIC (pH < 7)	

The salt will only be acidic or basic if a weak acid or weak base can be formed. Note that for weak acids and bases, the equilibrium lies toward the side of of the undissociated acid or base.

Kinds of salts

We can extend this type of analysis to other combinations of strong or weak acids and bases.

The chart below shows an example of this type of analysis on the four possible combinations.
What about the weak acid and weak base salt?

	STRONG ACID (e.g. HCI)	WEAK ACID (e.g. HCIO)
STRONG BASE (e.g. NaOH)	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction SALT IS NEUTRAL ($\mathrm{pH}=7$)	$\mathrm{NaOH}+\mathrm{HClO} \rightleftharpoons \mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-}$ SALT IS BASIC ($\mathrm{pH}>7$)
WEAK BASE (e.g. NH_{3})	$\mathrm{NH}_{3}+\mathrm{HCl} \rightleftharpoons \mathrm{NH}_{4} \mathrm{Cl}$ - $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ - $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ no reaction SALT IS ACIDIC ($\mathrm{pH}<7$)	$\mathrm{NH}_{3}+\mathrm{HClO} \rightleftharpoons \mathrm{NH}_{4} \mathrm{ClO}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+}$ - $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-}$ SALT IS ???

The salt will only be acidic or basic if a weak acid or weak base can be formed. Note that for weak acids and bases, the equilibrium lies toward the side of of the undissociated acid or base.

Kinds of salts

We can extend this type of analysis to other combinations of strong or weak acids and bases.

The chart below shows an example of this type of analysis on the four possible combinations.
What about the weak acid and weak base salt?

	STRONG ACID (e.g. HCl)	WEAK ACID (e.g. HClO)	
STRONG BASE (e.g. NaOH)	$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction SALT IS NEUTRAL ($\mathrm{pH}=7$)	$\mathrm{NaOH}+\mathrm{HClO} \rightleftharpoons \mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction - $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-}$ SALT IS BASIC ($\mathrm{pH}>7$)	The salt will only be acidic or basic if a weak acid or weak base can be formed. Note that for weak acids and bases, the equilibrium lies toward the side of of the undissociated acid or base.
WEAK BASE (e.g. NH_{3})	$\mathrm{NH}_{3}+\mathrm{HCl} \rightleftharpoons \mathrm{NH}_{4} \mathrm{Cl}$ - $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ - $\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ no reaction SALT IS ACIDIC (pH < 7)	$\mathrm{NH}_{3}+\mathrm{HClO} \rightleftharpoons \mathrm{NH}_{4} \mathrm{ClO}+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+}$ - $\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}+\mathrm{OH}^{-}$ SALT IS ???	In these cases, we need to compare the $\boldsymbol{K}_{\mathrm{a}}$ of the acid $\left(\mathrm{NH}_{4}{ }^{+}\right)$ and the K_{b} of the base $\left(\mathrm{ClO}^{-}\right)$. $\begin{aligned} & \boldsymbol{K}_{\mathrm{a}}>\boldsymbol{K}_{\mathrm{b}} \rightarrow \text { acidic salt } \\ & \boldsymbol{K}_{\mathrm{a}}=\boldsymbol{K}_{\mathrm{b}} \rightarrow \text { neutral salt } \\ & \boldsymbol{K}_{\mathrm{a}}<\boldsymbol{K}_{\mathrm{b}} \rightarrow \text { basic salt } \end{aligned}$

PRACTICE PROBLEM

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral.

- anscer -

	Salt
A.	KBr
B.	NaHCO_{3}
C.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$
D.	$\mathrm{NH}_{4} \mathrm{~F}$
E.	CaCl_{2}

PRACTICE PROBLEM

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral.

- ansceer -

For each salt, we can write out the reaction of the salt (its ions) with water to determine if it is acidic, basic, or neutral.

	Salt	Reaction with water	Neutral
A.	KBr	$\mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction	
B.	NaHCO_{3}		
C.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$		
D.	$\mathrm{NH}_{4} \mathrm{~F}$		
E.			

PRACTICE PROBLEM

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral.

- ansceer -

For each salt, we can write out the reaction of the salt (its ions) with water to determine if it is acidic, basic, or neutral.

	Salt	Reaction with water	Neutral
A.	KBr	$\mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction	
B.	NaHCO_{3}	$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$	Basic
C.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$		
D.	$\mathrm{NH}_{4} \mathrm{~F}$		
E.			

PRACTICE PROBLEM

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral.

- ansceer -

For each salt, we can write out the reaction of the salt (its ions) with water to determine if it is acidic, basic, or neutral.

	Salt	Reaction with water	
A.	KBr	$\mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction	Neutral
B.	NaHCO_{3}	$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$	Basic
C.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$	Basic
D.			
E.	$\mathrm{NH}_{4} \mathrm{~F}$		

PRACTICE PROBLEM

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral.

- ansceer -

For each salt, we can write out the reaction of the salt (its ions) with water to determine if it is acidic, basic, or neutral.

	Salt	Reaction with water		
A.	KBr	$\begin{aligned} & \mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \text { no reaction } \\ & \mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \text { no reaction } \end{aligned}$	Neutral	
B.	NaHCO_{3}	$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$	Basic	
C.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$	Basic	
D.	$\mathrm{NH}_{4} \mathrm{~F}$	$\begin{gathered} \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+} \\ \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HF}+\mathrm{OH}^{-} \\ \mathrm{K}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)>\mathrm{K}_{\mathrm{b}}\left(\mathrm{~F}^{-}\right) \end{gathered}$	Acidic	$\begin{aligned} & K_{a}\left(\mathrm{NH}_{\mathrm{a}}^{+}\right)=5.68 \times 10^{-10} \\ & K_{\mathrm{b}}\left(\mathrm{~F}^{-}\right)=1.47 \times 10^{-11} \end{aligned}$
E.	CaCl_{2}			

PRACTICE PROBLEM

Determine whether aqueous solutions of the following salts are acidic, basic, or neutral.

- ansceer -

For each salt, we can write out the reaction of the salt (its ions) with water to determine if it is acidic, basic, or neutral.

	Salt	Reaction with water		
A.	KBr	$\begin{aligned} & \mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \text { no reaction } \\ & \mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \text { no reaction } \end{aligned}$	Neutral	
B.	NaHCO_{3}	$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$	Basic	
C.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ no reaction $\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$	Basic	
D.	$\mathrm{NH}_{4} \mathrm{~F}$	$\begin{aligned} & \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+} \\ & \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HF}+\mathrm{OH}^{-} \\ & K_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)>\mathrm{K}_{\mathrm{b}}\left(\mathrm{~F}^{-}\right) \end{aligned}$	Acidic	$\begin{gathered} K_{\mathrm{a}}\left(\mathrm{NH}_{+}^{+}\right)=5.68 \times 10^{-10} \\ K_{\mathrm{b}}\left(\mathrm{~F}^{-}\right)=1.47 \times 10^{-11} \end{gathered}$
E.	CaCl_{2}	$\begin{aligned} & \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \text { no reaction } \\ & \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \text { no reaction } \end{aligned}$	Neutral	

