ORGANIC CHEMISTRY

NOMENCLATURE: NAMING ORCANIC COMPOUNDS

How to read organic structures

Organic chemistry deals predominantly with carbons (C) and hydrogens (H). Because of this the octet rule ($8 \mathrm{e}^{-}$) is satisfied most of the time.

As such, we often introduce two shorthands to produce skeletal structures:

1) We don't explicitly draw all the H atoms bonded to each C atom. This is to say that we assume that H atoms complete the octet on C .
2) We also don't write out the C atoms.

PRACTICE EXERCISE

How many carbon and hydrogen atoms are in the following compound?

C atoms $=$
H atoms $=$
$\mathrm{C}_{X} \mathrm{H}_{Y}=$
skeletal structure

How to read organic structures

Organic chemistry deals predominantly with carbons (C) and hydrogens (H). Because of this the octet rule ($8 \mathrm{e}^{-}$) is satisfied most of the time.

As such, we often introduce two shorthands to produce skeletal structures:

1) We don't explicitly draw all the H atoms bonded to each C atom. This is to say that we assume that H atoms complete the octet on C .
2) We also don't write out the C atoms.

PRACTICE EXERCISE

How many carbon and hydrogen atoms are in the following compound?

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
formula
$\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$
(C, ${ }^{12}$

PRACTICE PROBLEM 1

Give the chemical formula $\left(\mathrm{C}_{\chi} \mathrm{H}_{Y}\right)$ for each of the following organic compounds drawn.

PRACTICE PROBLEM 1

Give the chemical formula $\left(\mathrm{C}_{\chi} \mathrm{H}_{Y}\right)$ for each of the following organic compounds drawn.

PRACTICE PROBLEM 1

Give the chemical formula $\left(\mathrm{C}_{\chi} \mathrm{H}_{Y}\right)$ for each of the following organic compounds drawn.

$\mathrm{C}_{6} \mathrm{H}_{8}$

$\mathrm{C}_{8} \mathrm{H}_{12}$

$\sqrt{\square}$
$\mathrm{C}_{9} \mathrm{H}_{16}$

Some basic vocabulary: carbon chains

Because many organic compounds consist of chains of carbon atoms, we introduce some important roots.

Let us first deal with a class of hydrocarbons called alkanes, which are composed of carbon atoms linked together with only single bonds. We will give this class of compounds the suffix "-ane".

The first four roots in this series require some memorization.

After a 4 C chain (but-), roots continue with Greek names: hex- (6 C), hept- (7 C), oct- (8 C), non- (9 C), dec- (10 C)

Some basic vocabulary: carbon groups

Sometimes we have carbon chains that branch off other carbon chains. One of these chains is designated as the parent (main) chain and the others are designed side chains (or substituents).

These substituents are still given the roots we saw previously but given a suffix of "-yl" to let us know it is not the parent (main) chain.

Consider the following examples of different length alkyl groups (-R) off a 3-carbon main chain in gray (propane):

Some basic vocabulary: halogen groups

Sometimes we have halogen substituents branch off the parent (main) carbon chain.

These halogen substituents are still given the root of the halogen but given a suffix of "-০".

Consider the following examples of different halogen groups ($-X$) off a 3-carbon main chain in gray (propane):

fluoro-

- Cl
chloro-

bromo-

iodo-

How to name alkanes (Part 1)

Let us start with a simple exercise: $\mathrm{C}_{6} \mathrm{H}_{14}$
Try to name the following compounds following the rules:

hexane

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See
 blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.

(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.

5. List the groups in alphabetical order by the roots.
(If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...

but do not alphabetize using the prefix; use the root!)

How to name alkanes (Part 1)

Let us start with a simple exercise: $\mathrm{C}_{6} \mathrm{H}_{14}$
Try to name the following compounds following the rules:

hexane

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.

butane
5. List the groups in alphabetical order by the roots.
(If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...

butane

How to name alkanes (Part 1)

Let us start with a simple exercise: $\mathrm{C}_{6} \mathrm{H}_{14}$
Try to name the following compounds following the rules:
 hexane

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See

methylpentane blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.

methylpentane
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.

methylbutane
5. List the groups in alphabetical order by the roots.
(If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...

methylbutane

How to name alkanes (Part 1)

Let us start with a simple exercise: $\mathrm{C}_{6} \mathrm{H}_{14}$
Try to name the following compounds following the rules:

hexane

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.

methylpentane

methylpentane
methylbutane
5. List the groups in alphabetical order by the roots.
(If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...

but do not alphabetize using the prefix; use the root!)

methylbutane

How to name alkanes (Part 1)

Let us start with a simple exercise: $\mathrm{C}_{6} \mathrm{H}_{14}$
Try to name the following compounds following the rules:

hexane

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.

2-methylpentane

3-methylpentane

List the groups in alphabetical order by the roots.
(If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...

2,3-dimethylbutane

2,2-dimethylbutane

How to name alkanes (Part 2)

Let us move to a more complex exercise: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}$
Try to name the following compounds following the rules!

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See
 blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)

4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.
5. List the groups in alphabetical order by the roots. (If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...

but do not alphabetize using the prefix; use the root!)

How to name alkanes (Part 2)

Let us move to a more complex exercise: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}$

Try to name the following compounds following the rules!

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)

heptane
 heptane
pentane
```
"di-" "tri-" "tetra-" "penta-" ...
```


but do not alphabetize using the prefix; use the root!)

How to name alkanes (Part 2)

Let us move to a more complex exercise: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}$

Try to name the following compounds following the rules!

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.
5. List the groups in alphabetical order by the roots. (If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...
but do not alphabetize using the prefix; use the root!)

chloro-
heptane
heptane
pentane

How to name alkanes (Part 2)

Let us move to a more complex exercise: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}$

Try to name the following compounds following the rules!

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See
 blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.
5. List the groups in alphabetical order by the roots. (If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...
but do not alphabetize using the prefix; use the root!)

heptane
pentane
pentane

How to name alkanes (Part 2)

Let us move to a more complex exercise: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}$

Try to name the following compounds following the rules!

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.
2. Identify and name the substituents attached to this chain. See

2,4-dibromo-6chloroheptane blue names.
3. Number the longest carbon chain from the side nearest to a substituent. See red numbers.
(If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.)
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.
5. List the groups in alphabetical order by the roots. (If more than one substituent, then use prefixes:
"di-" "tri-" "tetra-" "penta-" ...
but do not alphabetize using the prefix; use the root!)

chloro-

2,4-dibromo-3-chloro-
2,4-dimethylpentane

PRACTICE PROBLEM 2

Match each of the following names to the structures (A-L) drawn.

4-methylheptane

2,4-dimethylhexane

2,2-dimethylhexane

2,3-dimethylpentane

1,1-dimethylcyclohexane

1-ethyl-3,3-dimethylcyclopentane

A

E

F

I

C

D

G

K

H

L

PRACTICE PROBLEM 2

Match each of the following names to the structures (A-L) drawn.

4-methylheptane (H)

2,4-dimethylhexane (B)

2,2-dimethylhexane (F)

2,3-dimethylpentane (E)

1,1-dimethylcyclohexane (J)

1-ethyl-3,3-dimethylcyclopentane (I)

A

E

F

C

D

G

J

I

How to name alkenes (ষ alkynes)

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.

This chain must include both carbons on the double bond!
2. Identify and name the substituents attached to this chain. See blue names.
3. Number the longest carbon chain from side nearest the double bond. See red numbers.

If the double bond is in the middle, start from end nearest a substituent. If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.

2-hexene (hex-2-ene)

How to name alkenes (๕্ট alkynes)

NAMING CONVENTIONS:

1. Identify and name the longest carbon chain. See red roots.

This chain must include both carbons on the double bond!
2. Identify and name the substituents attached to this chain. See blue names.
3. Number the longest carbon chain from side nearest the double bond. See red numbers.

If the double bond is in the middle, start from end nearest a substituent. If more than one type of substituent, then start on the side nearest to the first cited/alphabetized substituent.
4. Label the location(s) of each substituent(s) by the number of the carbon atom to which it is attached.
5. If more than one double bond, use prefixes (diene, triene, etc.) and label the location(s) of each double bond.
6. List the groups in alphabetical order by the roots.

2-hexene (or hex-2-ene)

4-methyl-1-pentene (or 4-methylpent-1-ene)

2-methyl-3-hexene (or 2-methylhex-3-ene)

2,4-hexadiene (or hexa-2,4-diene)

2-bromo-5-methyl-3-hexene (or 2-bromo-5-methylhex-3-ene)

PRACTICE PROBLEM3

Draw the structures based on the following chemical names. Ignore cis/trans isomerism.

- answer -

1-chloro-5,5-dimethylhept-3-yne

3,4-dichlorocyclopent-1-ene
2-chloro-4-methylhexa-2,4-diene

3,3-diethyl-1-iodopentane

PRACTICE PROBLEM 3

Draw the structures based on the following chemical names. Ignore cis/trans isomerism.

- answer -

1-chloro-5,5-dimethylhept-3-yne

6-methylhept-3-ene

3,4-dichlorocyclopent-1-ene

3,3-diethyl-1-iodopentane

4-methylpent-2-yne

