Osmotic Pressure

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

WHAT (ELSE) HAPPENS WHEN I ADD SOLUTE TO A SOLVENT?

We've already seen the effect of adding solute to a solvent in terms of vapor pressure (decreases with increasing solute) via Raoult's Law.

All of these properties are dependent only on the concentration of solute, and not their identity, and are called colligative properties.

WHAT (ELSE) HAPPENS WHEN I ADD SOLUTE TO A SOLVENT?

We've already seen the effect of adding solute to a solvent in terms of vapor pressure (decreases with increasing solute) via Raoult's Law.

We've also seen the effect of adding solute to a solvent in terms of phase changes; e.g. freezing point depression and boiling point elevation.

FREEZING POINT DEPRESSION

$$
\Delta \mathrm{T}_{\mathrm{f}}=i \mathrm{~K}_{\mathrm{f}} m
$$

BOILING POINT ELEVATION

$$
\Delta \mathrm{T}_{\mathrm{b}}=i \mathrm{~K}_{\mathrm{b}} m
$$

All of these properties are dependent only on the concentration of solute, and not their identity, and are called colligative properties.

WHAT (ELSE) HAPPENS WHEN I ADD SOLUTE TO A SOLVENT?

We've already seen the effect of adding solute to a solvent in terms of vapor pressure (decreases with increasing solute) via Raoult's Law.

We've also seen the effect of adding solute to a solvent in terms of phase changes; e.g. freezing point depression and boiling point elevation.

FREEZING POINT DEPRESSION

$$
\Delta \mathrm{T}_{\mathrm{f}}=i \mathrm{~K}_{\mathrm{f}} m
$$

BOILING POINT ELEVATION

$$
\Delta \mathrm{T}_{\mathrm{b}}=i \mathrm{~K}_{\mathrm{b}} m
$$

Lastly, we will consider the effect of adding solute to a solvent in terms of water flow through a semipermeable membrane (osmosis) through the concept of osmotic pressure.

All of these properties are dependent only on the concentration of solute, and not their identity, and are called colligative properties.

WHAT IS OSMOTIC PRESSURE?

Consider the following contraption where the left side is an aqueous solution of 1.15 M NaCl and the right side is an aqueous solution of 0.10 M NaCl .

WHAT IS OSMOTIC PRESSURE?

Consider the following contraption where the left side is an aqueous solution of 1.15 M NaCl and the right side is an aqueous solution of 0.10 M NaCl .

Separating these two solutions is a semipermeable membrane, which allows water to flow between the two sides but not the ions Na^{+}and Cl^{-}.

WHAT IS OSMOTIC PRESSURE?

Consider the following contraption where the left side is an aqueous solution of 1.15 M NaCl and the right side is an aqueous solution of 0.10 M NaCl .

Separating these two solutions is a semipermeable membrane, which allows water to flow between the two sides but not the ions Na^{+}and Cl^{-}.

The two solutions each exert a pressure against this membrane, and this pressure
 depends on the molarity of the solution via:

$$
\Pi=i \mathrm{MRT}
$$

Π = pressure (atm)
$i=$ number of dissociated particles per mole of solute
$M=$ molarity (mol/L or M)
$\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{T}=$ temperature (K)

WHAT IS OSMOTIC PRESSURE?

Consider the following contraption where the left side is an aqueous solution of 1.15 M NaCl and the right side is an aqueous solution of 0.10 M NaCl .

Separating these two solutions is a semipermeable membrane, which allows water to flow between the two sides but not the ions Na^{+}and Cl^{-}.

The two solutions each exert a pressure against this membrane, and this pressure depends on the molarity of the solution via:


```
\[
\Pi=i \mathrm{MRT}
\]
\(i=\) number of dissociated particles per mole of solute
\(\mathrm{M}=\) molarity ( \(\mathrm{mol} / \mathrm{L}\) or M )
\(\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}\)
\(\mathrm{T}=\) temperature \((\mathrm{K})\)
    \Pi=iMRT
\[
\Pi=\text { pressure (atm) }
\]
    T = temperature (K)
```

Water always flows to balance the concentrations, so water flows from the solution of low concentration (low Π) to the solution of high concentration (low Π).

WHAT IS OSMOTIC PRESSURE?

Consider the following contraption where the left side is an aqueous solution of 1.15 M NaCl and the right side is an aqueous solution of 0.10 M NaCl .

Separating these two solutions is a semipermeable membrane, which allows water to flow between the two sides but not the ions Na^{+}and Cl^{-}.

The two solutions each exert a pressure against this membrane, and this pressure depends on the molarity of the solution via:

$$
\Pi=i \mathrm{MRT}
$$

Π = pressure (atm)
$i=$ number of dissociated particles per mole of solute
$\mathrm{M}=\mathrm{molarity}$ ($\mathrm{mol} / \mathrm{L}$ or M)
$\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{T}=$ temperature (K)

Osmotic pressure ($\Delta \Pi$) is the pressure required to achieve equilibrium (stop water flow), which is equal to the difference in the two pressures.

Water always flows to balance the concentrations, so water flows from the solution of low concentration (low Π) to the solution of high concentration (low Π).

Solution A: $100 . \mathrm{mL}$ of $0.982 \mathrm{M} \mathrm{CaCl}_{2}$ (strong electrolyte) Solution B: 16 g NaCl (strong electrolyte) in $100 . \mathrm{mL}$ water In which direction will solvent flow across a membrane separating the two?

Solution A: 100. mL of $0.982 \mathrm{M} \mathrm{CaCl}_{2}$ (strong electrolyte) Solution B: 16 g NaCl (strong electrolyte) in 100. mL water In which direction will solvent flow across a membrane separating the two?

Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

Solution A: 100. mL of $0.982 \mathrm{M} \mathrm{CaCl}_{2}$ (strong electrolyte) Solution B: 16 g NaCl (strong electrolyte) in 100. mL water In which direction will solvent flow across a membrane separating the two?

Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

For both solutions, we can simply calculate the concentration of ions (iM):

Solution A: 100. mL of $0.982 \mathrm{M} \mathrm{CaCl}_{2}$ (strong electrolyte) Solution B: 16 g NaCl (strong electrolyte) in 100. mL water In which direction will solvent flow across a membrane separating the two?

Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

For both solutions, we can simply calculate the concentration of ions (iM):

$$
i \mathrm{M}_{\mathrm{A}}=(3) \times 0.982 \mathrm{M}=2.95 \mathrm{M}
$$

Solution A: 100. mL of $0.982 \mathrm{M} \mathrm{CaCl}_{2}$ (strong electrolyte)

 Solution B: 16 g NaCl (strong electrolyte) in 100. mL water In which direction will solvent flow across a membrane separating the two?Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

For both solutions, we can simply calculate the concentration of ions (iM):

$$
\begin{aligned}
& i \mathrm{M}_{\mathrm{A}}=(3) \times 0.982 \mathrm{M}=2.95 \mathrm{M} \\
& i \mathrm{M}_{\mathrm{B}}=(2) \times \frac{16 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g}}}{100 . \mathrm{mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}}=5.5 \mathrm{M}
\end{aligned}
$$

Solution A: 100. mL of $0.982 \mathrm{M} \mathrm{CaCl}_{2}$ (strong electrolyte)

 Solution B: 16 g NaCl (strong electrolyte) in 100. mL water In which direction will solvent flow across a membrane separating the two?Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

For both solutions, we can simply calculate the concentration of ions (iM):

$$
\begin{aligned}
& i \mathrm{M}_{\mathrm{A}}=(3) \times 0.982 \mathrm{M}=2.95 \mathrm{M} \\
& i \mathrm{M}_{\mathrm{B}}=(2) \times \frac{16 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g}}}{100 . \mathrm{mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}}=5.5 \mathrm{M}
\end{aligned}
$$

Solution B has a greater concentration of ions, so water will flow from side A to side B.

A $27.40-\mathrm{mg}$ sample of a nonelectrolye is dissolved in 100.0 mL of water at $23.6^{\circ} \mathrm{C}$. If the measured osmotic pressure (Π) is 9.94 Torr, what is its molar mass?

Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

Working backwards, we can solve for the molarity (M) since we know $i=1$:

$$
\begin{aligned}
\Pi & =i \mathrm{MRT} \\
\text { 9.94 Torr } \times \frac{1 \mathrm{~atm}}{760 \mathrm{Torr}} & =(1)(\mathrm{M})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(23.6+273.1_{5} \mathrm{~K}\right) \\
\mathrm{M} & =5.37 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

Finally, we can back-calculate the molar mass from the molarity:

$$
M=\frac{\mathrm{n}_{\text {solute }}}{\mathrm{V}_{\text {solution }}}=\frac{\mathrm{m}_{\text {solute }} \times \frac{1}{\mathrm{MM}_{\text {solute }}}}{V_{\text {solution }}}
$$

A $27.40-\mathrm{mg}$ sample of a nonelectrolye is dissolved in 100.0 mL of water at $23.6^{\circ} \mathrm{C}$. If the measured osmotic pressure (Π) is 9.94 Torr, what is its molar mass?

A $27.40-\mathrm{mg}$ sample of a nonelectrolye is dissolved in 100.0 mL of water at $23.6^{\circ} \mathrm{C}$. If the measured osmotic pressure (Π) is 9.94 Torr, what is its molar mass?

Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

A $27.40-\mathrm{mg}$ sample of a nonelectrolye is dissolved in 100.0 mL of water at $23.6^{\circ} \mathrm{C}$. If the measured osmotic pressure (Π) is 9.94 Torr, what is its molar mass?

Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

Working backwards, we can solve for the molarity (M) since we know $i=1$:

$$
\begin{aligned}
\Pi & =i \mathrm{MRT} \\
9.94 \operatorname{Torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{Torr}} & =(1)(\mathrm{M})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(23.6+273.1_{5} \mathrm{~K}\right) \\
\mathrm{M} & =5.37 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

A $27.40-\mathrm{mg}$ sample of a nonelectrolye is dissolved in 100.0 mL of water at $23.6^{\circ} \mathrm{C}$. If the measured osmotic pressure (Π) is 9.94 Torr, what is its molar mass?

Your first actual step in these types of problem is to determine what kind of compound you have! Because:

- Molecular compounds that dissolve have an $\mathrm{i}=1$ since they do not dissociate.
- Insoluble ionic compounds do not dissociate in water, so no changes are observed!
- Soluble ionic compounds have theoretical i values equal to the number of ions per mole compound.

Working backwards, we can solve for the molarity (M) since we know $i=1$:

$$
\begin{aligned}
\Pi & =i \mathrm{MRT} \\
9.94 \operatorname{Torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{Torr}} & =(1)(\mathrm{M})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)\left(23.6+273.1_{5} \mathrm{~K}\right) \\
\mathrm{M} & =5.37 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

Finally, we can back-calculate the molar mass from the molarity:

$$
M=\frac{n_{\text {solute }}}{V_{\text {solution }}}=\frac{m_{\text {solute }} \times \frac{1}{\mathrm{MM}_{\text {solute }}}}{V_{\text {solution }}}
$$

$$
\mathrm{MM}_{\text {solute }}=\frac{\mathrm{m}_{\text {solute }}}{\mathrm{M} \times \mathrm{V}_{\text {solution }}}=\frac{0.02740 \mathrm{~g}}{\left(5.37 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.1000 \mathrm{~L})}=510 \cdot \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

