Oxidation States

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number = 0

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number = 0 Ex) Br_2 : each Br is 0

Ex) Mg: Mg is 0

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number = 0 Ex) Br_2 : each Br is 0

Ex) Mg: Mg is 0

2. Hydrogen usually has an oxidation number = +1 Ex) H₂O; CH₄

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number = 0

Ex) Br₂: each Br is 0

Ex) Mg: Mg is 0

2. Hydrogen usually has an oxidation number = +1

Ex) H₂O; CH₄

3. Oxygen usually has an oxidation number = -2

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number = 0 Ex) Br_2 : each Br is 0

Ex) Mg: Mg is 0

Hydrogen usually has an oxidation number = +1

Ex) H₂O; CO₂

Ex) H_2O ; CH_4

3. Oxygen usually has an oxidation number = -2

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number = 0

Ex) Br₂: each Br is 0

Ex) Mg: Mg is 0

2. Hydrogen usually has an oxidation number = +1

Ex) H₂O; CH₄

3. Oxygen usually has an oxidation number = -2

Ex) H₂O; CO₂

4. Everything else: follow the rules for ionic charges!

The oxidation state is a hypothetical charge of an element <u>IF</u> it were 100% ionic.

Take-home message: Treat oxidation number/state like a charge.

Some general rules:

1. Pure elements have oxidation number = 0

2. Hydrogen usually has an oxidation number = +1

3. Oxygen usually has an oxidation number = -2

4. Everything else: follow the rules for ionic charges!

Ex) Br₂: each Br is 0

Ex) Mg: Mg is 0

Ex) H_2O ; CH_4

Ex) H₂O; CO₂

Ex) NaCl: Na = +1; Cl = -1

Ex) CF_4 : C = +4; F = -1

Ex) CO_2 : C = +4; O = -2

Start by assigning each oxygen an oxidation number of –2.

Start by assigning each oxygen an oxidation number of –2.

This means that 4 oxygen atoms has a combined charge of 8–.

Start by assigning each oxygen an oxidation number of –2.

This means that 4 oxygen atoms has a combined charge of 8–.

Because the overall charge of sulfate is 2-, the charge on the S atom must be 6+.

Start by assigning each oxygen an oxidation number of –2.

This means that 4 oxygen atoms has a combined charge of 8-.

Because the overall charge of sulfate is 2-, the charge on the S atom must be 6+.

So sulfur has an oxidation number of +6.

- 1. CO₃²⁻:
- 2. CN-:
- 3. CrO₄²⁻:
- 4. Cr₂O₇²⁻:
- 5. H₂PO₄-:

1. CO_3^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 3 O^{2–} atoms have 6–, C must be 4+.

Carbon has an oxidation number of +4.

2. CN-:

3. CrO_4^{2-} :

4. $Cr_2O_7^{2-}$:

5. H₂PO₄-:

1. CO_3^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 3 O^{2–} atoms have 6–, C must be 4+.

Carbon has an oxidation number of +4.

2. CN⁻: Nitrogen has an oxidation number of –3.

Because the total charge is –1, and 1 N³– atom has 3–, C must be 2+.

Carbon has an oxidation number of +2.

3. CrO_4^{2-} :

4. $Cr_2O_7^{2-}$:

5. H₂PO₄-:

1. CO_3^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 3 O^{2–} atoms have 6–, C must be 4+.

Carbon has an oxidation number of +4.

2. CN⁻: Nitrogen has an oxidation number of –3.

Because the total charge is -1, and 1 N³- atom has 3-, C must be 2+.

Carbon has an oxidation number of +2.

3. CrO_4^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 4 O^{2–} atoms have 8–, Cr must be 6+.

Chromium has an oxidation number of +6.

4. $Cr_2O_7^{2-}$:

5. H₂PO₄⁻:

1. CO_3^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 3 O^{2–} atoms have 6–, C must be 4+.

Carbon has an oxidation number of +4.

2. CN⁻: Nitrogen has an oxidation number of –3.

Because the total charge is -1, and 1 N³- atom has 3-, C must be 2+.

Carbon has an oxidation number of +2.

3. CrO_4^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 4 O^{2–} atoms have 8–, Cr must be 6+.

Chromium has an oxidation number of +6.

4. $Cr_2O_7^{2-}$: Each oxygen has an oxidation number of -2.

Because the total charge is 2-, and 7 O²⁻ atoms have 14-, 2 Crⁿ⁺ atoms must be 6+.

Chromium has an oxidation number of +6.

5. H₂PO₄⁻:

1. CO_3^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 3 O^{2–} atoms have 6–, C must be 4+.

Carbon has an oxidation number of +4.

2. CN⁻: Nitrogen has an oxidation number of –3.

Because the total charge is -1, and 1 N³- atom has 3-, C must be 2+.

Carbon has an oxidation number of +2.

3. CrO_4^{2-} : Each oxygen has an oxidation number of -2.

Because the total charge is 2–, and 4 O^{2–} atoms have 8–, Cr must be 6+.

Chromium has an oxidation number of +6.

4. $Cr_2O_7^{2-}$: Each oxygen has an oxidation number of -2.

Because the total charge is 2-, and 7 O²⁻ atoms have 14-, 2 Crⁿ⁺ atoms must be 6+.

Chromium has an oxidation number of +6.

5. $H_2PO_4^-$: Each hydrogen has an oxidation number of +1.

Each oxygen has an oxidation number of –2.

Because the total charge is 1–, and 4 O²–and 2 H⁺ atoms have 6–, P must be 5+.

Phosphorus has an oxidation number of +5.