Quantum Numbers and Atomic Orbitals

DR. MIOY T. HUYNH YALE UNIVERSITY CHEMISTRY 161 FALL 2019

www.mioy.org/chem161

Q: What is an <u>electron</u>?

ELECTRONS: Wave-Particle Duality

Is it a wave that carries energy? ELECTRON AS A WAVE

A: It behaves as both a wave and a particle.

ELECTRONS BEHAVE VERY MUCH LIKE LIGHT!

Dr. Mioy T. Huynh

The Bohr Model: Quantization

MODERN ATOMIC THEORY

- Electrons are likely to be found near the nucleus.
 - \rightarrow Energy diagram to the left is not horrible but could be better.
- However, at the same time, electrons can be anywhere really—think back to the wave-like properties of electrons (or light).
- We don't really know how the electron moves (Heisenberg uncertainty principle), but we know where it <u>probably</u> is.
- <u>ORBITAL</u>: The space around the nucleus where the electron's location is most probable, often called the wave function (Ψ^2).

NUCLEUS

n = 1

LET'S WORK THROUGH THE QUANTUM NUMBERS AND ATOMIC ORBITALS NOW.

What are quantum numbers anyway though?

Quantum numbers are a unique set of numbers that define an orbital or an electron. Every orbital and every electron has a unique set of quantum numbers.

n: Principal Quantum Number

The principal quantum number (*n*) is very much like that of Bohr's notation. It simply tells us the relative size and energy of an orbital.

Generally, the larger the value of *n*, the larger the orbital and the higher its energy.

Think back to Bohr's picture and why that might be true. As we get farther and farther from the nucleus, the orbital is larger (the electron is found farther from the nucleus) and as a result the energy is higher.

l: Angular Momentum Quantum Number

The angular momentum quantum number (*l*) defines the shape of our orbital.

The values of ℓ range from 0 to (n - 1).

l: Angular Momentum Quantum Number

The angular momentum quantum number (*l*) defines the shape of our orbital.

The values of ℓ range from 0 to (n - 1).

l: Angular Momentum Quantum Number

The angular momentum quantum number (*l*) defines the shape of our orbital.

The values of ℓ range from 0 to (n - 1). We associate the values of ℓ with letters, such that:

Value of <mark></mark>	0	1	2	3
Orbital Type	5	р	d	f

We'll go through what this means visually in a bit.

The magnetic quantum number (m_l) defines the orientation of the orbital.

The magnetic quantum number (m_l) defines the orientation of the orbital.

The values of m_{ℓ} range from $-\ell$ to $+\ell$.

Value of <mark></mark>	0	1	2
Orbital Type	5	р	d
Values of m _e	0	-1, 0, +1	-2, -1, 0, +1, +2

The magnetic quantum number (m_l) defines the orientation of the orbital.

The values of m_{ℓ} range from $-\ell$ to $+\ell$. The number of possible m_{ℓ} tells us how many orbitals exist for a given ℓ .

Value of <mark></mark>	0	1	2
Orbital Type	S	p	d
Values of m _e	0	-1, 0, +1	-2, -1, 0, +1, +2
(# of <mark>m</mark> _ℓ)	(1)	(3)	(5)

PUTTING IT ALL TOGETHER:

• The principal quantum number (*n*) tells us the relative size and energy of an orbital.

- The principal quantum number (*n*) tells us the relative size and energy of an orbital.
- This is easiest to show with the l = 0 (s type) orbitals with different n values.

- The principal quantum number (*n*) tells us the relative size and energy of an orbital.
- This is easiest to show with the l = 0 (s type) orbitals with different n values.
- The farther we get from the nucleus, the larger the orbital shape and the higher the energy:

- The principal quantum number (*n*) tells us the relative size and energy of an orbital.
- This is easiest to show with the l = 0 (s type) orbitals with different n values.
- The farther we get from the nucleus, the larger the orbital shape and the higher the energy:

$$3s \to (n = 3, l = 0, m_l = 0)$$

$$2s \to (n = 2, l = 0, m_l = 0)$$

$$1s \to (n = 1, l = 0, m_l = 0)$$

PUTTING IT ALL TOGETHER:

ENERGY

- The angular momentum quantum number (m_l) tells us the shape of the orbital.
- We've already seen what an l = 0 orbital (s type) looks like.

 $2s \rightarrow (n=2, \ell=0, m_{\ell}=0)$

- The angular momentum quantum number (m_l) tells us the shape of the orbital.
- We've already seen what an $\ell = 0$ orbital (s type) looks like.
- What about an l = 1 orbital (p type)?

- The angular momentum quantum number (m_l) tells us the shape of the orbital.
- We've already seen what an l = 0 orbital (s type) looks like.
- What about an l = 1 orbital (p type)?

- The angular momentum quantum number (m_l) tells us the shape of the orbital.
- We've already seen what an l = 0 orbital (s type) looks like.
- What about an l = 1 orbital (p type)?

The spin magnetic quantum number (m_s) defines the orientation of the <u>electron</u>.

The spin magnetic quantum number (m_s) defines the orientation of the <u>electron</u>.

The values of m_s are either $-\frac{1}{2}$ or $+\frac{1}{2}$.

Value of <mark></mark>	0	1	2
Orbital Type	S	p	d
Values of m _e	0	-1, 0, +1	-2, -1, 0, +1, +2
(# of <mark>m</mark> _ℓ)	(1)	(3)	(5)
Values of m _s	-1/2, +1/2	-1/2, +1/2	-1/2, +1/2

						The spin mag the orientation	netic qua of the <u>ele</u>	antum num ectron.	iber (<i>m</i> _s) defines
RGY	n = 3	$\frac{\ell = 2}{\ell = 1}$ $\ell = 0$	$\frac{m_{\ell} = -2}{m_{\ell} = -1}$ $\frac{m_{\ell} = -1}{m_{\ell} = 0}$	$\frac{m_{\ell} = -1}{m_{\ell} = 0} \frac{m_{\ell} = 0}{m_{\ell} = +1}$	$\overline{m_{\ell} = +1} \overline{m_{\ell} = +2}$	The values of <i>r</i> The value of <i>r</i> which is either	<mark>m_s are eit n_s tells u "up" or "c 1</mark>	her –½ or - s the "spin lown".* l	+ ¹ / ₂ . " of the electron,
NE NE	n = 2 -	<i>l</i> = 1		$\overline{m_{\ell}=0}$ $\overline{m_{\ell}=+1}$		Value of <mark></mark>	0	1	2
ш		$\ell = 0$	m _l = 0			Orbital Type	S	p	d
	<i>n</i> = 1	<i>l</i> = 0	$\frac{1l}{m_{\ell}=0}$			Values of m _e (# of m _e)	0 (1)	-1, 0, +1 (3)	-2, -1, 0, +1, +2 (5)
	NUCLEUS					Values of m _s	-1/2, +1/2	-1/2, +1/2	-1/2, +1/2

* Spin doesn't mean the electron is physically spinning in space, so "up" and "down" don't have any physical meaning. We just need to designate two different orientations and "up" and "down" are easiest.

				The spin mag the orientation	netic qua of the <u>ele</u>	antum num ectron.	n <mark>ber (m_s)</mark> defines
RGY	n = 3	$\frac{\ell}{\ell} = 2$ $\frac{\ell}{\ell} = 1$ $\ell = 0$	$\frac{2}{m_{\ell}} = -\frac{m_{\ell}}{m_{\ell}} = -2 \qquad \frac{m_{\ell}}{m_{\ell}} = -1 \qquad \frac{m_{\ell}}{m_{\ell}} = 0 \qquad \frac{m_{\ell}}{m_{\ell}} = -1 \qquad m_{\ell$	The values of The value of <i>r</i> which is either	m _s are eit m _s tells u "up" or "o 1	her –½ or s the "spin lown".* l	+ ¹ / ₂ . " of the electron,
Ш Z	<i>n</i> = 2	$\frac{1}{\ell} = 1$	$\overline{m_{\ell}} = -1$ $\overline{m_{\ell}} = 0$ $\overline{m_{\ell}} = +1$	Value of <mark></mark>	0	1	2
ш		$\ell = 0$	$m_{\ell} = 0$	Orbital Type	S	p	d
			11	Values of m _e	0	-1, 0, +1	-2, -1, 0, +1, +2
	<i>n</i> = 1	<i>l</i> = 0	$\frac{1}{m_{\ell}} = 0$	(# of <mark>m</mark> _ℓ)	(1)	(3)	(5)
			Every single <i>m</i> , orbital can hold two	Values of m _s	-1/2, +1/2	-1/2, +1/2	-½, +½
	NUCLEUS	,	electrons, one with $m_s = -\frac{1}{2}$ (1).				

* Spin doesn't mean the electron is physically spinning in space, so "up" and "down" don't have any physical meaning. We just need to designate two different orientations and "up" and "down" are easiest.

					The spin mag the orientation	netic qua of the <u>ele</u>	antum num actron.	i <mark>ber (m_s)</mark> defines
RGY	n = 3	$\frac{\ell}{\ell} = 2$ $\frac{\ell}{\ell} = 1$ $\ell = 0$	$\frac{2}{m_{\ell}} = -\frac{m_{\ell}}{m_{\ell}} = -\frac{2}{m_{\ell}} = -\frac{m_{\ell}}{m_{\ell}} = -\frac{1}{m_{\ell}} = -\frac{1}{m_{\ell}}$	$+1 \overline{m_{\ell}} = +2$	The values of r The value of r which is either	m _s are eit n _s tells u "up" or "c 1	her –½ or - s the "spin lown".* ا	+ ¹ ∕₂. " of the electron,
Ш И	<i>n</i> = 2	$\frac{1}{\ell} = 1$	$m_{\ell} = -1$ $m_{\ell} = 0$ $m_{\ell} = +1$		Value of <mark></mark>	0	1	2
ш		$\ell = 0$	$m_{\ell} = 0$		Orbital Type	S	p	d
			11		Values of m _e	0	-1, 0, +1	-2, -1, 0, +1, +2
	<i>n</i> = 1	$- \ell = 0$	$\frac{1}{m_{\ell}} = 0$		(# of <mark>m</mark> _e)	(1)	(3)	(5)
			Every single <i>m</i> , orbital can bo	Every single <i>m</i> , orbital can hold two		-1/2, +1/2	-½, +½	-1/2, +1/2
NUCLEUS electrons, one with m_s = with $m_s = +\frac{1}{2}$ (1).		electrons, one with $m_s = -\frac{1}{2} (l)$ a with $m_s = +\frac{1}{2} (1)$.	nd one	[# of electrons]	[2]	[6]	[10]	

* Spin doesn't mean the electron is physically spinning in space, so "up" and "down" don't have any physical meaning. We just need to designate two different orientations and "up" and "down" are easiest.

What set of orbitals correspond to each of the following sets of quantum numbers? How many electrons can each hold?

n	e	Orbitals	Total number of electrons
2	1		
5	3		
3	2		
4	0		

What set of orbitals correspond to each of the following sets of quantum numbers? How many electrons can each hold?

n	e	Orbitals	Total number of electrons
2	1	2p	
5	3	5f	
3	2	3 <i>d</i>	
4	0	4 s	

What set of orbitals correspond to each of the following sets of quantum numbers? How many electrons can each hold?

n	e	Orbitals	Total number of electrons
2	1	2р	There are 3 <i>p</i> -type orbitals, each with 2 electrons, so 2 <i>p</i> can hold 6 electrons.
5	3	5 <i>f</i>	There are 7 <i>f</i> -type orbitals, each with 2 electrons, so 5 <i>f</i> can hold 14 electrons.
3	2	3 <i>d</i>	There are 3 <i>d</i> -type orbitals, each with 2 electrons, so 3 <i>d</i> can hold 10 electrons.
4	0	4s	There is 1 <i>s</i> -type orbitals, with 2 electrons, so 4 <i>s</i> can hold 2 electrons.

n	e	m _e	m _s	Allowed or not?
3	2	0	-1/2	
5	4	4	+1/2	
3	0	1	+1/2	
4	4	1	-1/2	

n	e	m _e	m _s	Allowed or not?
3	2	0	-1/2	For $n = 3$: $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$
5	4	4	+1/2	For $n = 5$: $\ell = 4 \rightarrow m_{\ell} = \{-4, -3, -2, -1, 0, +1, +2, +3, +4\}$ $\ell = 3 \rightarrow m_{\ell} = \{-3, -2, -1, 0, +1, +2, +3\}$ $\ell = 2 \rightarrow m_{\ell} = \{-2, -1, 0, +1, +2\}$ $\ell = 1 \rightarrow m_{\ell} = \{-1, 0, +1\}$ $\ell = 0 \rightarrow m_{\ell} = 0$
3	0	1	+1/2	For $n = 3$: $\ell = 2 \rightarrow m_{\ell} = \{-2, -1, 0, +1, +2\}$ $\ell = 1 \rightarrow m_{\ell} = \{-1, 0, +1\}$ $\ell = 0 \rightarrow m_{\ell} = 0$
4	4	1	-1/2	For $n = 4$: $l = 3 \rightarrow m_l = \{-3, -2, -1, 0, +1, +2, +3\}$ $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$

n	e	m _ℓ	m _s	Allowed or not?
3	2	0	-1/2	For $n = 3$: $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$ ALLOWED
5	4	4	+1/2	For $n = 5$: $l = 4 \rightarrow m_l = \{-4, -3, -2, -1, 0, +1, +2, +3, +4\}$ $l = 3 \rightarrow m_l = \{-3, -2, -1, 0, +1, +2, +3\}$ $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$ ALLOWED
3	0	1	+1/2	For $n = 3$: $\ell = 2 \rightarrow m_{\ell} = \{-2, -1, 0, +1, +2\}$ $\ell = 1 \rightarrow m_{\ell} = \{-1, 0, +1\}$ $\ell = 0 \rightarrow m_{\ell} = 0$
4	4	1	-1/2	For $n = 4$: $\ell = 3 \rightarrow m_{\ell} = \{-3, -2, -1, 0, +1, +2, +3\}$ $\ell = 2 \rightarrow m_{\ell} = \{-2, -1, 0, +1, +2\}$ $\ell = 1 \rightarrow m_{\ell} = \{-1, 0, +1\}$ $\ell = 0 \rightarrow m_{\ell} = 0$

n	e	m _ℓ	m _s	Allowed or not?
3	2	0	-1/2	For $n = 3$: $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$ ALLOWED
5	4	4	+1/2	For $n = 5$: $l = 4 \rightarrow m_l = \{-4, -3, -2, -1, 0, +1, +2, +3, +4\}$ $l = 3 \rightarrow m_l = \{-3, -2, -1, 0, +1, +2, +3\}$ $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$ ALLOWED
3	0	1	+1/2	For $n = 3$: $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$ NOT ALLOWED because $m_l \neq 1$ for $n = 3$ and $l = 0$.
4	4	1	- <u>1/2</u>	For $n = 4$: $l = 3 \rightarrow m_l = \{-3, -2, -1, 0, +1, +2, +3\}$ $l = 2 \rightarrow m_l = \{-2, -1, 0, +1, +2\}$ $l = 1 \rightarrow m_l = \{-1, 0, +1\}$ $l = 0 \rightarrow m_l = 0$ NOT ALLOWED because $l \neq 4$ for $n = 4$.