Quantum Numbers and Atomic Orbitals

DR. MIOY T. HUYNH
YALE UNIVERSITY
CHEMISTRY 161
FALL 2019

www.mioy.org/chem161

ELECTRONS: Wave-Particle Duality

Q: What is an electron?

Is it a wave that carries energy?
ELECTRON AS A WAVE

Is it a negatively charged particle?
ELECTRON AS A PARTICLE

A: It behaves as both a wave and a particle.

ELECTRONS BEHAVE VERY MUCH LIKE LIGHT!

The Bohr Model: Quantization

MODERN ATOMIC THEORY

NUCLEUS

- Electrons are likely to be found near the nucleus. \rightarrow Energy diagram to the left is not horrible but could be better.
- However, at the same time, electrons can be anywhere really-think back to the wave-like properties of electrons (or light).
- We don't really know how the electron moves (Heisenberg uncertainty principle), but we know where it probably is.
- ORBITAL: The space around the nucleus where the electron's location is most probable, often called the wave function (Ψ^{2}).

LET'S WORK THROUGH THE QUANTUM NUMBERS AND ATOMIC ORBITALS NOW.

What are quantum numbers anyway though?

Quantum numbers are a unique set of numbers that define an orbital or an electron.
Every orbital and every electron has a unique set of quantum numbers.

n : Principal Quantum Number

NUCLEUS

The principal quantum number (n) is very much like that of Bohr's notation. It simply tells us the relative size and energy of an orbital.

Generally, the larger the value of n, the larger the orbital and the higher its energy.

Think back to Bohr's picture and why that might be true. As we get farther and farther from the nucleus, the orbital is larger (the electron is found farther from the nucleus) and as a result the energy is higher.

ℓ : Angular Momentum Quantum Number

	$n=3$
¢ O ¢ $\underset{\sim}{\text { ¢ }}$	$n=2$

The angular momentum quantum number (ℓ) defines the shape of our orbital.

The values of ℓ range from 0 to $(n-1)$.

ℓ : Angular Momentum Quantum Number

The angular momentum quantum number (ℓ) defines the shape of our orbital.

The values of ℓ range from 0 to $(n-1)$.

ℓ : Angular Momentum Quantum Number

The angular momentum quantum number (ℓ) defines the shape of our orbital.

The values of ℓ range from 0 to $(n-1)$.
We associate the values of ℓ with letters, such that:

Value of ℓ	0	1	2	3
Orbital Type	s	p	d	f

We'll go through what this means visually in a bit.

m_{ℓ} : Magnetic Quantum Number

The magnetic quantum number $\left(m_{\ell}\right)$ defines the orientation of the orbital.

NUCLEUS

m_{ℓ} : Magnetic Quantum Number

$$
n=1 \quad \overline{\ell=0}
$$

NUCLEUS

The magnetic quantum number $\left(m_{\ell}\right)$ defines the orientation of the orbital.

The values of m_{ℓ} range from $-\ell$ to $+\ell$.

Value of ℓ	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
Orbital Type	s	p	d
Values of m_{ℓ}	0	$-1,0,+1$	$-2,-1,0,+1,+\mathbf{2}$

$$
\text { Values of } m_{\ell} \quad 0 \quad-1,0,+1 \quad-2,-1,0,+1,+2
$$

\qquad -

m_{ℓ} : Magnetic Quantum Number

NUCLEUS

The magnetic quantum number $\left(m_{\ell}\right)$ defines the orientation of the orbital.

The values of m_{ℓ} range from $-\ell$ to $+\ell$. The number of possible m_{ℓ} tells us how many orbitals exist for a given ℓ.

Value of ℓ	0	1	2
Orbital Type	s	p	d
Values of m_{ℓ}	0	$-1,0,+1$	$-2,-1,0,+1,+2$
(\# of m_{ℓ})	(1)	(3)	(5)

m_{ℓ} : Magnetic Quantum Number

			The magnetic quantum number $\left(m_{\ell}\right)$ defines the orientation of the orbital. The values of m_{ℓ} range from $-\ell$ to $+\ell$. The number of possible m_{ℓ} tells us how many orbitals exist for a given ℓ.			
			Value of ℓ	0	1	2
			Orbital Type	s	p	d
			Values of m_{e}	0	-1, 0, +1	-2, -1, 0, +1, +2

NUCLEUS

Quantum Numbers \Leftrightarrow Atomic Orbitals

PUTTING IT ALL TOGETHER:

- The principal quantum number (n) tells us the relative size and energy of an orbital.

$$
\begin{aligned}
& n=1 \quad \overline{\ell=0} \overline{m_{\ell}=0}
\end{aligned}
$$

Quantum Numbers \Leftrightarrow Atomic Orbitals

NUCLEUS

PUTTING IT ALL TOGETHER:

- The principal quantum number (n) tells us the relative size and energy of an orbital.
- This is easiest to show with the $\ell=0$ (s type) orbitals with different n values.

Quantum Numbers \Leftrightarrow Atomic Orbitals

 NUCLEUS

PUTTING IT ALL TOGETHER:

- The principal quantum number (n) tells us the relative size and energy of an orbital.
- This is easiest to show with the $\ell=0$ (s type) orbitals with different n values.
- The farther we get from the nucleus, the larger the orbital shape and the higher the energy:

$$
\begin{aligned}
& 3 s \rightarrow\left(n=3, \ell=0, m_{\ell}=0\right) \\
& 2 s \rightarrow\left(n=2, \ell=0, m_{\ell}=0\right)
\end{aligned}
$$

$$
1 s \rightarrow\left(n=1, \ell=0, m_{\ell}=0\right)
$$

Quantum Numbers \Leftrightarrow Atomic Orbitals

Quantum Numbers \Leftrightarrow Atomic Orbitals

Quantum Numbers \Leftrightarrow Atomic Orbitals

PUTTING IT ALL TOGETHER:

- The angular momentum quantum number $\left(m_{\ell}\right)$ tells us the shape of the orbital.
- We've already seen what an $\ell=0$ orbital (s type) looks like.
- What about an $\ell=1$ orbital (p type)?

$$
2 s \rightarrow\left(n=2, \ell=0, m_{\ell}=0\right)
$$

Quantum Numbers \Leftrightarrow Atomic Orbitals

PUTTING IT ALL TOGETHER:

- The angular momentum quantum number $\left(m_{\ell}\right)$ tells us the shape of the orbital.
- We've already seen what an $\ell=0$ orbital (s type) looks like.
- What about an $\ell=1$ orbital (p type)?

Quantum Numbers \Leftrightarrow Atomic Orbitals

m_{s} : Spin Magnetic Quantum Number

The spin magnetic quantum number (m_{s}) defines the orientation of the electron.

m_{s} : Spin Magnetic Quantum Number

\boldsymbol{m}_{s} : Spin Magnetic Quantum Number

\boldsymbol{m}_{s} : Spin Magnetic Quantum Number

\boldsymbol{m}_{s} : Spin Magnetic Quantum Number

What set of orbitals correspond to each of the following sets of quantum numbers? How many electrons can each hold?

n	ℓ	Orbitals	Total number of electrons
2	1		
5	3		
3	2		

What set of orbitals correspond to each of the following sets of quantum numbers? How many electrons can each hold?

\boldsymbol{n}	\boldsymbol{e}	Orbitals	Total number of electrons
2	1	$2 p$	
5	3	$5 f$	
3	2	$3 d$	
4			

What set of orbitals correspond to each of the following sets of quantum numbers? How many electrons can each hold?

\boldsymbol{n}	\boldsymbol{e}	Orbitals	Total number of electrons
2	1	$2 p$	There are $3 p$-type orbitals, each with 2 electrons, so $2 p$ can hold 6 electrons.
5	3	$5 f$	There are 7 f-type orbitals, each with 2 electrons, so $5 f$ can hold 14 electrons.
3	2	$3 d$	There are $3 d$-type orbitals, each with 2 electrons, so $3 d$ can hold 10 electrons.
4	0	$4 s$	There is $1 s$-type orbitals, with 2 electrons,
so $4 s$ can hold 2 electrons.			

Which of the following sets of quantum numbers are allowed?

n	ℓ	m_{ℓ}	m_{s}	Allowed or not?
3	2	0	$-1 / 2$	

5	4	4	$+1 / 2$
3	0	1	$+1 / 2$
4	4	1	$-1 / 2$

Which of the following sets of quantum numbers are allowed?

\boldsymbol{n}	$\boldsymbol{\ell}$	$\boldsymbol{m}_{\boldsymbol{\ell}}$	$\boldsymbol{m}_{\mathbf{s}}$	Allowed or not?
3	2	0	$-1 / 2$	For $n=3: \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\}$
$\ell=1 \rightarrow m_{\ell}=\{-1,0,+1\}$				

5
4
$4 \quad+1 / 2$

$$
\begin{aligned}
& \text { For } n=5: \ell=4 \rightarrow m_{\ell}=\{-4,-3,-2,-1,0,+1,+2,+3,+4\} \\
& \ell=3 \rightarrow m_{\ell}=\{-3,-2,-1,0,+1,+2,+3\} \\
& \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\
& \ell=1 \rightarrow m_{\ell}=\{-1,0,+1\} \\
& \ell=0 \rightarrow m_{\ell}=0
\end{aligned}
$$

3
0
1
$+1 / 2$

$$
\text { For } \begin{aligned}
n=3: ~ & =2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\
\ell & =1 \rightarrow m_{\ell}=\{-1,0,+1\} \\
\ell & =0 \rightarrow m_{\ell}=0
\end{aligned}
$$

4
4
$1 \quad-1 / 2$

$$
\text { For } \begin{aligned}
n=4: & \begin{aligned}
\ell & =3 \\
& \rightarrow m_{\ell}=\{-3,-2,-1,0,+1,+2,+3\} \\
\ell & =2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\
& =1 \rightarrow m_{\ell}=\{-1,0,+1\} \\
& \ell
\end{aligned}=0 \rightarrow m_{\ell}=0
\end{aligned}
$$

Which of the following sets of quantum numbers are allowed?

n	l	m_{ℓ}	$m_{\text {s }}$	Allowed or not?
3	2	0	-1/2	For $n=3$: $\begin{aligned} & \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ & \ell=1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ & \ell=0 \rightarrow m_{\ell}=0 \end{aligned}$ ALLOWED
5	4	4	+1/2	$\text { For } \begin{aligned} n=5: & =4 \rightarrow m_{\ell}=\{-4,-3,-2,-1,0,+1,+2,+3,+4\} \\ \ell & =3 \rightarrow m_{\ell}=\{-3,-2,-1,0,+1,+2,+3\} \\ \ell & =2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ \ell & =1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ \ell & =0 \rightarrow m_{\ell}=0 \end{aligned}$
3	0	1	+1/2	ALLOWED $\text { For } \begin{aligned} n=3: ~ & =2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ \ell & =1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ \ell & =0 \rightarrow m_{\ell}=0 \end{aligned}$
4	4	1	$-1 / 2$	For $n=4$: $\begin{aligned} & \ell=3 \rightarrow m_{\ell}=\{-3,-2,-1,0,+1,+2,+3\} \\ & \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ & \ell=1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ & \ell=0 \rightarrow m_{\ell}=0 \end{aligned}$

Which of the following sets of quantum numbers are allowed?

n	e	m_{e}	m_{s}	Allowed or not?
3	2	0	$-1 / 2$	For $n=3$: $\begin{aligned} & \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ & \ell=1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ & \ell=0 \rightarrow m_{\ell}=0 \end{aligned}$ ALLOWED
5	4	4	$+1 / 2$	For $n=5$: $\begin{aligned} & \ell=4 \rightarrow m_{\ell}=\{-4,-3,-2,-1,0,+1,+2,+3,+4\} \\ & \ell=3 \rightarrow m_{\ell}=\{-3,-2,-1,0,+1,+2,+3\} \\ & \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ & \ell=1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ & \ell=0 \rightarrow m_{\ell}=0 \end{aligned}$ ALLOWED
3	0	1	$+1 / 2$	For $n=3$: $\begin{aligned} & \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ & \ell=1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ & \ell=0 \rightarrow m_{\ell}=0 \end{aligned}$ NOT ALLOWED because $m_{\ell} \neq 1$ for $n=3$ and $\ell=0$.
4	4	1	$-1 / 2$	For $n=4$: $\begin{aligned} & \ell=3 \rightarrow m_{\ell}=\{-3,-2,-1,0,+1,+2,+3\} \\ & \ell=2 \rightarrow m_{\ell}=\{-2,-1,0,+1,+2\} \\ & \ell=1 \rightarrow m_{\ell}=\{-1,0,+1\} \\ & \ell=0 \rightarrow m_{\ell}=0 \end{aligned}$ NOT ALLOWED because $\ell \neq 4$ for $n=4$.

