NUCLEAR CHEMISTRY

NUCLEAR STABILITY AND RADIOACTIVE DECAY

Calculate the nuclear binding energy of 6 Li given that the mass of a proton is 1.0073 amu, the mass of a neutron is 1.0087 amu, and the mass of the 6 Li nucleus is 6.0154 amu. Note that 1 amu = 1.66×10^{-27} kg and 1 J = 1 kg· $^{\rm m^2}/_{\rm s^2}$.

Calculate the nuclear binding energy of 6 Li given that the mass of a proton is 1.0073 amu, the mass of a neutron is 1.0087 amu, and the mass of the 6 Li nucleus is 6.0154 amu. Note that $1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$ and $1 \text{ J} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$.

- answer -

First, we need to determine that ⁶Li has 3 protons and 3 neutrons.

Second, we need to calculate the mass defect (Δm):

$$\Delta m = \left[\sum m_{\text{neutrons}} + \sum m_{\text{protons}}\right] - m_{\text{nucleus}}$$

$$= [3 \times (1.0087 \text{ amu}) + 6 \times (1.0073 \text{ amu})] - 6.0154 \text{ amu}$$
 $\Delta m = 0.0326 \text{ amu}$

Finally, calculate the nuclear binding energy (BE):

BE(
6
Li) = $(\Delta m)c^{2}$
= $\left(0.0326 \text{ amu} \times \frac{1.66 \times 10^{-27} \text{ kg}}{1 \text{ amu}}\right) \left(3.00 \times 10^{8} \frac{\text{m}}{\text{s}}\right)^{2}$
BE(6 Li) = 4.87×10^{-12} J

Predict the type(s) of radioactive decay that ¹⁹Ne might undergo.

Predict the type(s) of radioactive decay that ¹⁹Ne might undergo.

- answer -

First, determine the ratio of neutrons:protons in ¹⁹Ne.

$$^{19}_{10}$$
Ne $\rightarrow \frac{9 \text{ n}}{10 \text{ p}}$

This indicates that ¹⁹Ne is neutron-poor (it would be below the belt of stability). Thus it is most likely to undergo either:

(i) Electron capture
$$^{19}_{10}\text{Ne} + ^{0}_{-1}\beta \rightarrow ^{19}_{9}\text{F}$$

(ii) Positron emission
$${}^{19}_{10}\text{Ne} \rightarrow {}^{19}_{9}\text{F} + + {}^{0}_{+1}\beta$$

Predict the type(s) of radioactive decay that ²¹⁰Po might undergo.

Predict the type(s) of radioactive decay that ²¹⁰Po might undergo.

- answer -

First, determine the ratio of neutrons:protons in ²¹⁰Po.

$$^{210}_{84}Po \rightarrow \frac{126 \text{ n}}{84 \text{ p}}$$

This indicates that 210 Po is very neutron-rich, and it is very heavy (Z > 83). Therefore, it is most likely to undergo alpha decay:

$$^{210}_{84}\text{Po} \rightarrow ^{206}_{82}\text{Pb} + ^{4}_{2}\alpha$$

Predict the type(s) of radioactive decay that ¹³¹I might undergo.

Predict the type(s) of radioactive decay that ¹³¹I might undergo.

- answer -

First, determine the ratio of neutrons:protons in ¹³¹I.

$$^{131}_{53}I \rightarrow \frac{78 \text{ n}}{53 \text{ p}}$$

This indicates that ¹³¹i is neutron-rich. Therefore, it is most likely to undergo beta decay:

$$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}\beta$$