NUCLEAR CHEMISTRY NUCLEAR STABILITY AND RADIOACTIVE DECAY

PRACTICE PROBLEM 1

Calculate the nuclear binding energy of ${ }^{6} \mathrm{Li}$ given that the mass of a proton is 1.0073 amu , the mass of a neutron is 1.0087 amu , and the mass of the ${ }^{6} \mathrm{Li}$ nucleus is 6.0154 amu . Note that $1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$ and $1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.

- answer -

PRACTICE PROBLEM

Calculate the nuclear binding energy of ${ }^{6} \mathrm{Li}$ given that the mass of a proton is 1.0073 amu , the mass of a neutron is 1.0087 amu , and the mass of the ${ }^{6} \mathrm{Li}$ nucleus is 6.0154 amu . Note that $1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$ and $1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.

- answer -

First, we need to determine that ${ }^{6} \mathrm{Li}$ has 3 protons and 3 neutrons.

Second, we need to calculate the mass defect (Δm):

$$
\begin{aligned}
\Delta m & =\left[\sum m_{\text {neutrons }}+\sum m_{\text {protons }}\right]-m_{\text {nucleus }} \\
& =[3 \times(1.0087 \mathrm{amu})+6 \times(1.0073 \mathrm{amu})]-6.0154 \mathrm{amu} \\
\Delta m & =0.0326 \mathrm{amu}
\end{aligned}
$$

Finally, calculate the nuclear binding energy (BE):

$$
\begin{aligned}
\mathrm{BE}\left({ }^{6} \mathrm{Li}\right) & =(\Delta m) c^{2} \\
& =\left(0.0326 \mathrm{amu} \times \frac{1.66 \times 10^{-27} \mathrm{~kg}}{1 \mathrm{amu}}\right)\left(3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \\
\mathrm{BE}\left({ }^{6} \mathrm{Li}\right)= & 4.87 \times 10^{-12} \mathrm{~J}
\end{aligned}
$$

PRACTICE PROBLEM 2

Predict the type(s) of radioactive decay that ${ }^{19} \mathrm{Ne}$ might undergo.

PRACTICE PROBLEM 2

Predict the type(s) of radioactive decay that ${ }^{19} \mathrm{Ne}$ might undergo.

- answer -

First, determine the ratio of neutrons:protons in ${ }^{19} \mathrm{Ne}$.

$$
{ }_{10}^{19} \mathrm{Ne} \rightarrow \frac{9 \mathrm{n}}{10 \mathrm{p}}
$$

This indicates that ${ }^{19} \mathrm{Ne}$ is neutron-poor (it would be below the belt of stability). Thus it is most likely to undergo either:
(i) Electron capture ${ }_{10}^{19} \mathrm{Ne}+{ }_{-1}^{0} \beta \rightarrow{ }_{9}^{19} \mathrm{~F}$
(ii) Positron emission ${ }_{10}^{19} \mathrm{Ne} \rightarrow{ }_{9}^{19} \mathrm{~F}++{ }_{+1}^{0} \beta$

PRACTICE PROBLEM 3

Predict the type(s) of radioactive decay that ${ }^{210} \mathrm{Po}$ might undergo.

PRACTICE PROBLEM 3

Predict the type(s) of radioactive decay that ${ }^{210} \mathrm{Po}$ might undergo.

- ansioer -

First, determine the ratio of neutrons:protons in ${ }^{210} \mathrm{Po}$.

$$
{ }_{84}^{210} \mathrm{Po} \rightarrow \frac{126 \mathrm{n}}{84 \mathrm{p}}
$$

This indicates that ${ }^{210}$ Po is very neutron-rich, and it is very heavy ($Z>83$). Therefore, it is most likely to undergo alpha decay:

$$
{ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{82}^{206} \mathrm{~Pb}+{ }_{2}^{4} \alpha
$$

PRACTICE PROBLEM 4

Predict the type(s) of radioactive decay that ${ }^{131}$ I might undergo.

PRACTICE PROBLEM 4

Predict the type(s) of radioactive decay that ${ }^{131}$ I might undergo.

- ansioer -

First, determine the ratio of neutrons:protons in ${ }^{131}$. .

$$
{ }_{53}^{131} \mathrm{I} \rightarrow \frac{78 \mathrm{n}}{53 \mathrm{p}}
$$

This indicates that ${ }^{131} \mathrm{i}$ is neutron-rich. Therefore, it is most likely to undergo beta decay:

$$
{ }_{53}^{131} \mathrm{I} \rightarrow{ }_{54}^{131} \mathrm{Xe}+{ }_{-1}^{0} \beta
$$

